No. 1]

1. On Functions of Yosida's Class (A)

By V. I. GAVRILOV*)

Department of Mathematics, University of Moscow, U.S.S.R.

(Comm. by Zyoiti SUETUNA, M. J. A., Jan. 12, 1970)

1. Let f(z) be a non-rational meromorphic function in $|z| < \infty$ and $\rho(f(z))$ the spherical derivative of f(z). Following K. Yosida [2], we say that f(z) belongs to the class (A) if for any sequence of complex numbers $\{a_n\}$, the family of functions

$$\{f(z+a_n)\}, \quad n=1, 2, \cdots,$$
 (1)

is normal in the sense of Montel $|z| < \infty$. If, in addition, any family of the form (1) admits no constant limit, we say that f(z) belongs to the subclass (A_0) [the functions of the 1st category in Yosida's terminology]. The subclass (A_0) contains, in particular, an important class of meromorphic functions as the doubly periodic functions.

Yosida [2] has proved that f(z) belongs to (A) if and only if $\rho(f(z)) = O(1), \quad z \to \infty.$

Among the other results, he has proved that a function of the subclass (A_0) possesses no Nevanlinna deficient value. In [1] the author has pointed out that Yosida's results allow to prove that a function of (A_0) admits no Valiron deficient value. The present note contains the details.

2. Using the standard terminology of the Nevanlinna theory, the deficiency of Valiron $\delta(a, f)$ of a value *a* is defined as follows:

$$\delta(a, f) = \overline{\lim_{r \to \infty}} \frac{m(r, a, f)}{T(r, f)} \,.$$

If $\delta(a, f) > 0$, the value *a* is said to be a Valiron deficient value for f(z).

Theorem. If f(z) belongs to (A_0) , then $\delta(a, f) = 0$ for any complex a (finite or infinite).

Proof. Yosida [2] has proved that for a function $f(z) \in (A_0)$ and for a set of complex values a_1, a_2, \dots, a_q $(q \ge 3)$,

$$\sum_{i=1}^{q} m(r, a_i, f) = O(r) + S(r)$$

holds with S(r) = o(T(r, f)). Our theorem will be proved if we show that

$$\lim_{r \to \infty} \frac{T(r, f)}{r^2} > 0 \tag{2}$$

is valid for any $f(z) \in (A_0)$.

^{*)} At present Visiting Professor, Department of Mathematics, Indian Institute of Technology, Bombay (India).

V. I. GAVRILOV

To prove (2) we make use of the Shimizu-Ahlfors formula

$$T(r, f) + O(1) = \int_{0}^{r} \frac{dt}{t} \iint_{|z| < t} [\rho(f(z))]^{2} dx dy, z = x + iy, \qquad (3)$$

and a theorem of Yosida [2]: f(z) belongs to (A_0) if and only if for any $\delta > 0$ there exists an $\varepsilon = \varepsilon(\delta) > 0$ such that

$$\iint_{|z-z_0| < \delta} [\rho(f(z))]^2 dx dy \ge \varepsilon \tag{4}$$

holds for any disk $|z\!-\!z_{\scriptscriptstyle 0}|\!<\!\delta$ of radius δ in $|z|\!<\!\infty.$

We put $\delta = \frac{1}{2}$ and denote the corresponding value of $\varepsilon = \varepsilon(\delta)$ by $\varepsilon_0 > 0$. Consider a disk |z| < t, t > 2, and divide it into the annuli $\varDelta_k : k - 1 \le |z| < k$; $k = 1, 2, \cdots, [t]$; here [t] denotes the integral part of t. For a fixed k, the annulus \varDelta_k contains at least 2k - 1 mutually disjoint disks of radius $\frac{1}{2}$. Thus, the number of mutually disjoint disks of radius $\frac{1}{2}$, which are contained in |z| < t, t > 2, is greater than $[t]^2 > \frac{t^2}{4}$. Therefore, by (4), for any $f(z) \in (A_0)$ the right hand side of (3) is of the form $\frac{\varepsilon_0 r^2}{8} + O(1)$, which proves (2).

Remark. From the point of view of the classification of meromorphic functions given in [1], it is interesting to compare our theorem to a result of T. Zinno and N. Toda [3]: if f(z) satisfies

$$\rho(f(z)) = O\left(\frac{1}{|z|}\right), \quad z \to \infty,$$

then it admits no Valiron deficient value.

References

- [1] V. I. Gavrilov: On classes of meromorphic functions which are characterized by the spherical derivative. Izv. Akad. Nauk USSR, ser. math., 32, 735-742 (1968) (in Russian).
- [2] K. Yosida: On a class of meromorphic functions. Proc. Phys. Math. Soc. Japan, 16 (7), 227-235 (1934).
- [3] T. Zinno and N. Toda: On Julia's exceptional functions. Proc. Japan Acad., 42 (10), 1120-1121 (1968).