33. Continuous Affine Transformations of Locally Compact Totally Disconnected Groups

By Ryotaro SATO

Department of Mathematics, Josai University, Saitama

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1970)

1. Introduction. In this paper the followings shall be proved. Let G be a locally compact totally disconnected non-discrete group and let T be a continuous automorphism of G. If there are two elements a and w in G such that $\{T(a)^n(w) | n=0, \pm 1, \pm 2, \cdots\}$ is dense in G then G is compact, where T(a) is the continuous affine transformation of G defined by $T(a)(x) = a \cdot Tx$ for x in G. Next let G be a locally compact totally disconnected (not necessarily non-discrete) group and let T be a continuous automorphism of G such that there is an element w in G such that $\{T^n(w) | n=0, \pm 1, \pm 2, \cdots\}$ is dense in G. Then G is compact, whence T. S. Wu's problem (see [1, p. 518] and also [6]) raised in 1967 concerning the study of topology of a locally compact group G which admits an ergodic continuous automorphism with respect to a Haar measure on G is solved affirmatively.

Recently M. Rajagopalan and B. Schreiber [4] have proved that if a locally compact group G has a continuous automorphism which is ergodic with respect to a Haar measure on G then G is compact. In their proof the property of Fourier-Stieltjes coefficients of idempotent measures on the torus $K = \{\exp(i\theta) | 0 \leq \theta < 2\pi\}$ plays an important role. In studying their techniques of the proof I have been led to that the techniques can be applied to the arguments of continuous affine transformations.

2. Continuous affine transformations. Throughout this paper, T and T(a) will be denoted a continuous automorphism of a locally compact group G and a continuous affine transformation of G induced by a in G and T, respectively.

Lemma 1. Let H be a complex Hilbert space, let A be a bounded operator and U_1 , U_2 unitary operators on H. Then for given ξ and η in H there is a complex regular measure μ on the 2-dimensional torus $K \times K$ whose Fourier-Stieltjes transform is given by

 $\hat{\mu}(m,n) = \langle AU_1^m \xi, U_2^n \eta \rangle, \qquad -\infty < m, n < \infty.$

Proof. Let ρ_1 and ρ_2 denote spectral measures on $[0, 2\pi)$ for U_1 and U_2 , respectively. For ξ , η in H we have

R. SATO

[Vol. 46,

$$\langle AU_1^m \xi, U_2^n \eta
angle = \left\langle A \int_0^{2\pi} \exp{(im\theta)} d
ho_1(\theta) \xi, \int_0^{2\pi} \exp{(in\theta)} d
ho_2(\theta) \eta
ight
angle$$

 $= \left\langle \int_0^{2\pi} \exp{(im\theta)} dA
ho_1(\theta) \xi, \int_0^{2\pi} \exp{(in\theta)} d
ho_2(\theta) \eta
ight
angle$
 $= \int_0^{2\pi} \int_0^{2\pi} \exp{i(m\theta_1 - n\theta_2)} d\langle A
ho_1(\theta_1) \xi,
ho_2(\theta_2) \eta
angle$
 $= \int_0^{2\pi} \int_0^{2\pi} \exp{i(m\theta_1 - n\theta_2)} d\langle \rho_2(\theta_2) A
ho_1(\theta_1) \xi, \eta
angle$

This implies that $f(m, n) = \langle AU_1^m \xi, U_2^n \eta \rangle$, $-\infty \langle m, n \langle \infty, \text{ is a Fourier-Stieltjes transform of some complex regular measure on <math>K \times K$. The proof is complete.

By Lemma 1 and [5, Theorem 2.7.2] it follows that the sequence $\langle \hat{\mu}(n,n) \rangle_{\infty=-\infty}^{n}$ is the sequence of Fourier-Stieltjes coefficients of some complex regular measure on the torus K.

Lemma 2. Let G be a locally compact group and let T(a) be a continuous affine transformation of G such that there is an element w in G such that $\{T(a)^n(w) | n=0, \pm 1, \pm 2, \cdots\}$ is dense in G. Then T is bi-continuous.

Proof. A locally compact group G which contains a countable dense set is σ -compact, and so T is an open automorphism by [3, Theorem (5.29)].

For x in G let V(x) be the unitary operator on $L^2(, \lambda)$, where λ is a left invariant Haar measure on G, defined by

 $V(x)f(y) = f(xy) \qquad (y \in G, f \in L^2(G, \lambda)).$

Let T(a) be as in Lemma 2 then there is $\delta > 0$ such that $\lambda(T(a)(E)) = \delta\lambda(E)$ for all Borel sets E of G. Then the operator U(a) on $L^2(G, \lambda)$ defined by

 $U(a)f(y) = \delta f(T(a)y) = \delta f(a \cdot Ty) \qquad (y \in G, f \in L^2(G, \lambda))$ is unitary and $U(a)^{-1}f(y) = \delta^{-1}f(T(a)^{-1}y) = \delta^{-1}f(T^{-1}a^{-1} \cdot T^{-1}y)$. We will denote by *e* the identity element in *G* and by *U* the unitary operator U(e). Then we have the following

Lemma 3. $V(T(a)^n(x)) = U^{-n}V(x)U(a)^n$ for every integer n and for every x in G.

Proof. Let x in G, n an integer, and $f \in L^2(G, \lambda)$. Then $U^{-n}V(x)U(a)^n f(y) = U^{-n}V(x)[\delta^n f(T(a)^n(y)]$ $= U^{-n}[\delta^n f(T(a)^n(xy))] = f(T(a)^n(x \cdot T^{-n}y)) = f(T(a)^n(x) \cdot y)$ $= V(T(a)^n(x)) f(y).$

Theorem 1. Let G be a locally compact totally disconnected nondiscrete group and let T(a) be a continuous affine transformation of G such that there is an element w in G such that $\{T(a)^n(w) | n=0, \pm 1, \pm 2, \cdots\}$ is dense in G. Then G is compact.

Proof. Let N be a compact open subgroup of G and let λ be normalized so that $\lambda(N)=1$. Let U(a) and V be as above. For x in G and n an integer we define

 $a_n(x) = \langle V(x)U(a)^n \chi_N, U^n \chi_N \rangle = \langle U^{-n}V(x)U(a)^n \chi_N, \chi_N \rangle,$ where χ_N is the indicator function of N. From Lemma 3 it follows $a_n(x) = \langle V(T(a)^n(x)) \chi_N, \chi_N \rangle$

$$= \int_{G} \chi_{N}(T(a)^{n}(x) \cdot y) \chi_{N}(y) d\lambda(y)$$

=
$$\begin{cases} 1 \text{ if } x \in T(a)^{-n}(N) \\ 0 \text{ if } x \notin T(a)^{-n}(N). \end{cases}$$
(1)

Thus $a_n(T(a)(x)) = \langle V(T(a)^{n+1}(x))\chi_N, \chi_N \rangle = a_{n+1}(x)$ for every integer n.

By Lemma 1 and the note below it, (1) implies that the sequence $\langle a_n(x) \rangle_{n=-\infty}^{\infty}$ is a sequence of Fourier-Stieltjes coefficients of some idempotent measure on the torus K, therefore $\langle a_n(x) \rangle_{n=-\infty}^{\infty}$ differs from a periodic sequence in at most finitely many places (see [2] or [5, 3.1.6]), from which the sequences $\{\langle a_n(x) \rangle | x \in G\}$ are countable. But the set M(x) defined by

$$egin{aligned} M(x) = & \{y \in G \,|\, \langle a_n(y)
angle = \langle a_n(x)
angle \} \ &= iginamin{smallmatrix}{\sim}{\cap}{\cap}{\cap} T(a)^{-n}(N^{ulletn}), \end{aligned}$$

where $N^{\epsilon_n} = N$ if $\epsilon_n = a_n(x) = 1$ and $N^{\epsilon_n} = G \cap N^c$ if $\epsilon_n = a_n(x) = 0$, is an intersection of closed sets, and so it is closed. Thus the Baire category theorem implies that there is at least one element x in G such that M(x)has non-void interior. Then the set

$$M^*(x) = \bigcup_{j=-\infty}^{\infty} T(a)^j(M(x))$$

No. 2]

 $= \{y \in G | \langle a_n(y) \rangle = \langle a_{n+k}(x) \rangle \text{ for some integer } k \}$ must contain the set $\{T(a)^{j}(w) | j=0, \pm 1, \pm 2, \cdots\}$ for M(x) is T(a)invariant and $M(x) \subset M^*(x)$.

If $a_n(x)=0$ for all but finitely many n, let $k=1+\max \{|m-n|\}$ $a_m(x) = a_n(x) = 1$. Since $\{T(a)^n(w) \mid n = 0, \pm 1, \pm 2, \dots\}$ is dense in G there are two integers m and n such that $|m-n| \ge k$ and $T(a)^m(w)$, $T(a)^n(w)$ belong to N, whence $T(a)^{-m}(N) \cap T(a)^{-n}(N)$ is non-void open in G and disjoint from $M^*(x)$, which is impossible. Thus $a_n(x) = 1$ for infinitely many n, from which and the essentially periodic property of the sequence $\langle a_n(x) \rangle$ it can be chosen a positive integer p such that in every interval of length p there is at least one n for which $a_n(x) = 1$. This demonstrates

 $M^*(x) \subset N \cup T(a)(N) \cup \cdots \cup T(a)^p(N).$

Thus the compactness of G follows. The proof is complete.

Corollary. Let G be a locally compact totally disconnected nondiscrete group and let a be an element in G such that $\{a^n | n=0, \pm 1,$ $\pm 2, \cdots$ is dense in G. Then G is compact.

Theorem 2. Let G be a locally compact totally disconnected nondiscrete group with a countable open basis and let T(a) be a continuous affine transformation of G. If T(a) is ergodic with respect to a Haar

measure λ on G then G is compact.

Proof. Let $\{O_j | j=1, 2, 3, \dots\}$ be a countable open basis of G and put

 $E_j = G \cap (\bigcup_{n=-\infty}^{\infty} T(a)^n (O_j))^c$ and $E = \bigcup_j E_j$.

Since T(a) is ergodic, $\lambda(E_j)=0$ for all j, whence $\lambda(E)=0$. Therefore T(a) has a dense orbit $\{T(a)^n(x) | n=0, \pm 1, \pm 2, \cdots\}$ for almost all x in G. Thus Theorem 1 implies that G is compact.

Theorem 3. Let G be a locally compact totally disconnected (not necessarily non-discrete) group and let T be a continuous automorphism which has a dense orbit in G. Then G is compact.

The proof is essentially identical with it of Theorem 1, and so it is sufficient to see that for every open subgroup N of G and for every pair (m, n) of integers $T^m(N) \cap T^n(N)$ is non-void open in G.

Remark 1. The non-discreteness of G in Theorems 1 and 2 is not omitted. For let G be the additive group of integers with discrete topology and let I be the identity transformation of G. Then the affine transformation I(1) defined by I(1)(n)=1+I(n)=1+n for n in G is ergodic with respect to a Haar measure on G and has a dense orbit $\{I(1)^n(1) | n=0, \pm 1, \pm 2, \cdots\} = G$. But G is trivially non-compact.

Remark 2. The non-discreteness and the second countability of G in Theorem 2 can be omitted if a continuous automorphism of G is ergodic (cf. [4]). This is similar to the relation between Theorems 1 and 3.

I wish to express my deep appreciation to Professor Shigeru Tsurumi for available discussions concerning the above problems.

References

- [1] J. Auslander and W. H. Gottschalk: Topological Dynamics. New York (1968).
- [2] H. Helson: Note on harmonic functions. Proc. Amer. Math. Soc., 6, 686– 691 (1953).
- [3] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis, Vol. 1. Berlin (1963).
- [4] M. Rajagopalan and B. Schreiber: Ergodic properties of automorphisms of a locally compact group. II (to appear).
- [5] W. Rudin: Fourier Analysis on Groups. New York (1962).
- [6] T. S. Wu: Continuous automorphisms on locally compact groups. Math. Z., 96, 256-258 (1967).

146