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48. Abelian Groups and R.Semigroups™

By Takayuki TAMURA
University of California, Davis, California,[J. S. A.

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1970)

§1. Introduction. A commutative archimedean cancellative
semigroup without idempotent is called an N-semigroup. The author
obtained the following [3 or 1, p. 136].

Theorem 1. Let K be an abelian group and N be the set of all
non-negative integers. Let I be o function KX K—N which satisfies
the following conditions:

(1) Ka,P=IB,) foralla,BeK.

(2) Ia,P)+I(aB, n=Ia, B)+IB,7) foralla,B,ycK.

(3) I(e,e)=1. ¢ being the identity element of K.

(4) For every ac K there is a positive integer m such that
I(a™, @) >0.

We define an operation on the set S=NXK={(m,a): me N,a e K} by
(m, &)(n, B)=(m+n+I(a, B), ap).

Then S ts an N-semigroup. Every N-semigroup is obtained in this
manner. S is denoted by S=(K; I).

To prove the theorem in [3] we used the fact ﬁ a"S=0, and a
n=1

group-congruence was defined, which are still effective in the case
where cancellation is not assumed. However the quotient group of an
N-semigroup gives another proof of the latter half of the theorem.
In this paper we study the relationship between an R-semigroup and
abelian group as the quotient group. Theorm 2 states the relationship
between the I-function of an N-semigroup and the factor system of the
quotient group as the extension. Theorem 4 is the main theorem of
this paper, which asserts the existence of maximal %-subsemigroups
of a given abelian group. Theorem 5 is an application of Theorem 4
to the extension theory of abelian groups.

§2. Proof of a part of the latter half of Theorem 1. Let S be
an N-semigroup and G be the quotient group of S, i.e. the smallest
group into which S can be embedded. We may assume SCG. Let
aeS. The element a is of infinite order in G. Let A Dbe the infinite
cyclic group generated by a. Let G,=G/A. G, is called the structure
group of S with respect to a. G is the disjoint union of the congruence
clagses of G modulo A.
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G= U 4,

€€Cq
where A, is the class corresponding to § € G, and in particular A,=A.
we will prove
(5) SNA,#0 forall §eG,.

Let x ¢ A,. Recalling the definition of the quotient group, x=bc¢™! for
some b,ce S, or xz¢=>b. Since S is archimedean, cd=a™ for some
d € S and some positive integer m. Then xc=> implies xa™=>bd, that
is, za® e SNA,. Let S;=SNA, for § e G,. In particular S,=SNA4,
={a*:1=1,2,8,...}. Then Szeg S., and S is homomorphic onto G,

under the restriction of the natural mapping, G—G,,to S. Let z,c A,
and let {x,: § e G,} be a complete representative system of G modulo A.
We will prove there is an integer d(§) such that for each &,
if 6(&)<m, x.a™ e S but if m<i(§), z.a™e S.

It is obvious that x.a’ € S, implies x.a’ € S, for all j>%. Since certainly
S.#0 by (5), it is sufficient to show S,#{z.a’:7=0,+1, +2,---}.
Suppose the contrary. Then x,¢S,. By archimedeaness yx.=a* for
gsome y €S and some k>0. Then yx.a'=a***e S for all integers ;
hence AcS. This is a contradiction to S,={a’: i>1}. Let p,=a’®x,.
p, cannot be divisible by a, in S. S, contains p,; in particular p,=a.
D is called a prime with respect to a. Therefore for any element x of
S there is m>0 and p, such that x=a™p, where m, p, are unique and
if z itself is a prime, m=0. For the remaining part the same argu-
ment ag in the original paper is effective.

Theorem 2. Let S be an N-semigroup, S=(K;I). The quotient
group G of S is the abelian extension of the additive group Z of all
integers by the abelian group K with respect to the factor system
c(a, B)V defined by

cla, P=I(a, B)—1.
Proof. Let G={((z,a)): x € Z, a € K} in which
(=, )W, P)=(@+y+ca, B, aP), ca, f)=Ia, f)—1
and
(@, aN"'=(—z—cla,a™,a™)
G is the extension of A={((x,¢));xeZ} by K. Now let S'={((n, ®));
aeK,n=1,2,...}. Then S=S§ by the map f:(n,a)—((n+1,a)).
Next we will prove G is generated by S’ in the sense of groups:
0, a))=((n, a))((n, )"
and if >0,
(=2, 0))=(n, ))(n+2,€)".
The element (0, ¢) of S is mapped to ((1,¢)) of S’. Itiseasy to see that
the structure group of S’ with respect to ((1, ¢)) is isomorphic to K.

1) See [2]. ¢ satisfies c(e, f)=c(B, @), c(e, B)+c(aB, P=c(a, fr)+c(B, 1), cle, &)=0
(e identity).
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§3. Maximal N-subsemigroup. Let G be an abelian non-torsion
group, S be an N-subsemigroup of G and A be an infinite cyclic sub-
group [a] of G generated by an element a of S.

Lemma 3. The following are equivalent:

(6) G is the quotient group of S.

(7) G=A.S.

(8) 8 intersects each congruence class of G modulo A.

Proof. (8) immediately follows from (6) as a consequence of (5)
in §2. (7)—(6), (8)—(7) are obvious.

Theorem 4. Let G be an abelian group which is not torsion.
Let a be an element of infinite order of G. There exists a (maximal)
RN-subsemigroup S containing a such that G is the quotient group of S.

Proof. The operation in G and S will be denoted by +. LetD be
an abelian divisible group into which G can be embedded. According
to the theory of abelian groups, D is the direct sum (i.e. the restricted
direct product): [See, for example, 2].

D= LEO5O,

ic4
where R;’s are the copies of the group of all rational numbers under

addition and C,’s are the quasicyclic groups C) C(p?), p,’s being various
n=1

primes. Let x,: D—R,; and z,: D—C, be the projections of D to R,
and C, respectively. Since a is of infinite order there is 4; € 4 such
that z,(a)+#0. The reason is this: Suppose m,(a)=0 for all 1¢e 4.
Then only a finite number of the components z,(a), € M, are not 0,
therefore a would be of finite order. We assume =, (a)>0.
Define S*={x e D: x,(x) >0}.
It is obvious that S* is commutative, cancellative and has no idem-
potent, and a € S*. To prove S* is archimedean, we see first

S*=P,®(> R® > C)

i e

where a € P,, and P,, is the semigroup of all positive rational numbers
under addition. P, is archimedean, and the second factor (i.e. the
sum of all factors within the parentheses) is a group, hence archime-
dean; therefore it is easy to show that S* is archimedean. Thus it
has been proved that S* is an R-semigroup containing a. We will
prove D=A4S*. Let xeD. Choose a positive integer » such that
nr,(@)+ 7, () >0. Then n-a+xecS*, hence DCA+S*. The other
direction is obvious. Nextlet S=GNS*. S will be one of N-semigroups
which are claimed. Clearly S contains ¢ and S is commutative, can-
cellative and has no idempotent. Since S* intersects all the congruence
classes of D modulo A (by Lemma 3), S*, hence S does all the con-
gruence classes of G modulo A, that is, G=A+ 8. It remains to show
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that S is archimedean. Let z,ye¢S. Since S* is archimedean there
are a positive integer m and an element z ¢ S* such that m.x=y-z.
On the other hand since z,y ¢ G,z G. Consequently zeS. It goes
without saying that G is the quotient group of S by Lemma 3. To prove
the existence of ¢ maximal one, use Zorn’s lemma: We can easily
prove that if S,, & ¢ 5, are N-semigroups containing a as above and if
S.c8, for £ <7, then e%)ESe is also such one.

§4. Application to abelian group theory.

Theorem 5. Let K be an abelian group and A be the group of
all integers under addition. If G is an abelian extension of A by K
with respect to a factor system f(a, B), KX K—A, then there exists a
factor system g(a, B) such that

(9) 9(a,p)z0

10) g(a, B) is equivalent® to f(a, fB).

Proof. By the assumption, let G={((m,a)): a e K,m=0, +1,
+2, ...} in which

11 ((m, )((n, B))=((m+n+ fa, B), ap)).

Let ¢ be the identity element of K. By Theorem 4 there is an N-
subsemigroup S containing ((1,¢)) such that G is the quotient group
of S. Recalling the proof in §1, for each a € K there is an integer
o0(a), in particular d(¢)=1, such that ((m, a)) € S for all m=d(a).
Hence
12) S={((m, @)): m>d(a), a € K}.
Since S is closed with respect to the group operation,
m+n+ fla, B =o(ap)
holds for all m=d(a) and all n=0(3). This is equivalent to
() +0(PB) + f(a, By=0(ap).
Let g(a, )= f(a, B)+0(a) +0(B)—od(afB). Then g(a, P) is a factor sys-
tem which is equivalent to f(a, 8) and
9(a, B =0.

Problem. Can Theorem 5 be directly proved without using Theo-
rem 4? Can Theorem 5 be generalized to the case where A is an ordered
group?

Addendum. Let G be a non-torsion abelian group, that is, the
abelian extension of the additive group A of all integers by an abelian
group K with respect to a factor system f. If 0 is a map, K—A,
satisfying

(i) 0()=1 ¢ being the identity of K,

(ii) fla, D+o(@)+d(P—0d(ap)=0 forall a,BeK,

2) See [2]. g(a, p) is said to be equivalent to f(a, p) if there is ¢p:K—A such
that g(a, f)=f(a, p+p(@)+o(A—pp).
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(iii) for every a e K there is a positive integer m such that
Sa, a™ +0(a) +0(a™ —o(a™*") >0,
and if S is defined by (12) with (11), then S is an N-semigroup. Every
RN-semigroup containing ((1,¢)) whose quotient group is G can be ob-
tained in this manner.
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