85. Other Characterizations and Weak Sum Theorems for Metric-dependent Dimension Functions

By J. C. Smith

(Comm. by Kinjirô KUNUGI, M. J. A., April 13, 1970)

1. Introduction. In [7] and [8] the author introduced the metricdependent dimension functions d_{θ} and d_{τ} and characterized them in terms of Lebesgue covers of metric spaces and for uniform spaces. The results for metric spaces are the following.

Theorem 1.1. Let (X, ρ) be a metric space. Then $d_{\mathfrak{g}}(X, \rho) \leq n$ if and only if every countable Lebesgue cover has an open refinement of order $\leq n+1$.

Theorem 1.2. Let (X, ρ) be a metric space. Then $d_{\tau}(X, \rho) \leq n$ if and only if every locally finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

A natural question now arises as to whether new metric-dependent dimension functions occur if "countable" and "locally finite" in the above characterization theorems are replaced by "star-countable" and "point finite" respectively. In §2 we define two such new dimension functions, d_6^* and d_7^* , and prove that $d_6^* = d_6$ and $d_7^* = d_7$. We also show that the dimension function d_5 of Hodel [1] has a "star-countable" equivalent definition. In §3 we introduce a new metric-dependent dimension function d_3^* , characterize it in terms of Lebesgue covers, and observe the following inequality $d_3 \leq d_3^* \leq d_6$. In §4 we generalize a sum theorem of Morita and establish "weak" locally finite sum theorems for d_2 , d_3 , d_3^* , d_6 , d_7 and d_0 in both metric and uniform spaces.

2. Equivalent characterization for d_6 and d_7 .

Definition 2.1. Let (X, ρ) be a metric space. Then $d_6^*(X, \rho) \le n$ if and only if every star-countable Lebesgue cover of X has an open refinement of order $\le n+1$.

We note that $d_{\mathfrak{s}}(X, \rho) \leq d_{\mathfrak{s}}^*(X, \rho)$ by Definition 2.1 and Theorem 1.1. By a similar technique as in Theorem 2 of [2] by Morita we have the following.

Theorem 2.2. Let $\mathcal{Q} = \{G_{\alpha} : \alpha \in A\}$ be a star-countable open cover of a T_1 space X. We divide the index set A into subsets $\{A_{\beta} : \beta \in B\}$ such that α and γ belong to A_{β} if and only if there exists a positive integer n such that $G_{\alpha} \subset \operatorname{St}^n(G_{\gamma}, \mathcal{G})$. Define $X_{\beta} = \bigcup_{\alpha \in A_{\beta}} G_{\alpha}$. Then we have the following

(1) $X = \bigcup_{\beta \in B} X_{\beta}$

(2) $X_{\beta} \cap X_{\beta'} = \emptyset \text{ for } \beta \neq \beta'$

(3) X_{β} is open and closed in X for each $\beta \in B$.

(4) $\mathcal{G}_{\beta} = \{G_{\alpha} : \alpha \in A_{\beta}\}$ is a countable open cover of X_{β} for each $\beta \in B$. Theorem 2.3. Let (X, ρ) be a metric space. Then $d_{\theta}(X, \rho) = d_{\theta}^{*}(X, \rho)$.

Proof. Assume $d_{\mathfrak{g}}(X, \rho) \leq n$. Let $\mathcal{Q} = \{G_{\alpha} : \alpha \in A\}$ be a starcountable Lebesgue cover of (X, ρ) . By Theorem 2.2 above the index set A can be partitioned into subsets $\{A_{\beta} : \beta \in B\}$, satisfying the conditions (1)-(4), where each \mathcal{Q}_{β} is a countable Lebesgue cover of X_{β} .

Since $d_6(X, \rho) \le n$, $d_6(X_\beta, \rho) \le n$ for each $\beta \in B$; so that \mathcal{G}_β has an open refinement \mathcal{U}_β such that order $(\mathcal{U}_\beta) \le n+1$ for each $\beta \in B$. Therefore $\mathcal{U} = \bigcup_{\beta \in B} \mathcal{U}_\beta$ is an open refinement of \mathcal{G} and order $(\mathcal{U}) \le n+1$. Hence $d_6^*(X, \rho) \le n$.

Corollary. Let (X, ρ) be a metric space. Then $d_{\mathfrak{s}}(X, \rho) \leq n$ if and only if every star-countable Lebesgue cover of X has an open refinement of order $\leq n+1$.

By a similar proof as in [8] we obtain the following.

Theorem 2.4. Let (X, \mathcal{U}) be a normal uniform space. Then $d_{\mathfrak{s}}(X, \mathcal{U}) \leq n$ if and only if every star-countable Lebesgue cover of X has an open refinement of order $\leq n+1$.

We now consider the metric-dependent dimension function similar to d_7 , which is defined in [7].

Definition 2.5. The dimension function d_7^* is defined like d_7 in [7] with the exception that $\{X - C'_a : a \in A\}$ is point finite.

Definition 2.6. Let X be a set and $\mathcal{G} = \{\mathcal{G}_{\lambda} : \lambda \in \Lambda\}$ be a collection of families of subsets of X. For each $\lambda \in \Lambda$, let $\mathcal{G}_{\lambda} = \{G_{\alpha} : \alpha \in A_{\lambda}\}$. Then $\bigwedge_{\lambda \in \Lambda} \{\mathcal{G}_{\lambda}\} = \{\cap G_{\alpha(\lambda)} : \alpha(\lambda) \in A_{\lambda}, \lambda \in \Lambda\}$

Lemma. Let X be a normal space, $\{G_{\alpha} : \alpha \in A\}$ a point finite open collection, and $\{F_{\alpha} : \alpha \in A\}$ a closed collection such that $F_{\alpha} \subset G_{\alpha}$ for each $\alpha \in A$. If $\mathcal{G} = \bigwedge_{\alpha \in A} \{G_{\alpha}, X - F_{\alpha}\}$ has an open refinement of order $\leq n+1$, then there exist closed sets B_{α} , separating F_{α} and $X - G_{\alpha}$ for each $\alpha \in A$ such that order $\{B_{\alpha} : \alpha \in A\} \leq n$.

Proof. Since $\{G_{\alpha} : \alpha \in A\}$ is point finite it is clear that $\mathcal{G} = \bigwedge_{\alpha \in A} \{G_{\alpha}, X - F_{\alpha}\}$ is a point finite cover of X. If $\mathcal{CV} = \{V_{\delta} : \delta \in A\}$ is an open refinement of \mathcal{G} of order $\leq n+1$ we may assume that \mathcal{CV} is also point finite. Note that given $V \in \mathcal{CV}$, then V intersects at most a finite number of the F_{α} . For if $V \cap F_{\alpha} \neq \emptyset$, then $V \subseteq G_{\alpha}$ and $\{G_{\alpha} : \alpha \in A\}$ is point finite. Since \mathcal{CV} is point finite and X is normal, there exists a closed cover $\mathcal{D} = \{D_{\delta} : \delta \in A\}$ such that $D_{\delta} \subset V_{\delta}$ for each $\delta \in A$. The remainder of the proof is essentially the same as [6, II, 5, B].

Theorem 2.7. Let (X, ρ) be a metric space. Then $d_r^*(X, \rho) \leq n$

No. 4]

if and only if every point finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

Proof. Using the previous lemma, the proof proceeds as that of Theorem 4.2 in [7].

In [9] the author has shown the following.

Theorem 2.8. Let (X, ρ) be a metric space. If \mathcal{G} is a point finite Lebesgue cover of X, then \mathcal{G} has a locally finite Lebesgue refinement.

Hence the following is clear.

Corollary. Let (X, ρ) be a metric space. Then $d_{\tau}(X, \rho) = d_{\tau}^*(X, \rho)$. As was the case for d_{θ} above we now have:

Theorem 2.9. Let (X, U) be a normal uniform space. Then $d_7(X, U) \leq n$ if and only if every point finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

In [1] Hodel introduced the metric dependent dimension function d_5 . We now observe that d_5 has an alternate definition.

Definition 2.10. Let (X, ρ) be a metric space. if $X=\emptyset$, $d_{\delta}^*(X, \rho) = -1$. Otherwise, $d_{\delta}^*(X, \rho) \le n$ if (X, ρ) satisfies this condition:

 (D_{δ}^{*}) Given any collection of closed pairs $\{C_{\alpha}, C'_{\alpha} : \alpha \in A\}$ such that there exists $\delta > 0$ with

(1) $\rho(C_{\alpha}, C'_{\alpha}) > 0$ for each $\alpha \in A$,

(2) $\{X - C'_{\alpha} : \alpha \in A\}$ is star countable,

then there exist closed sets B_{α} , separating C_{α} and C'_{α} , such that order $\{B_{\alpha}: \alpha \in A\} \leq n$.

Note that $d_{\mathfrak{s}}(X, \rho) \leq d_{\mathfrak{s}}^*(X, \rho)$ by definition.

Theorem 2.11. Let (X, ρ) be a metric space. Then $d_{\mathfrak{s}}(X, \rho) = d_{\mathfrak{s}}^*(X, \rho)$.

Proof. Assume $d_{5}(X, \rho) \leq n$ and $\{C_{\alpha}, C'_{\alpha} : \alpha \in A\}$ is any collection of closed pairs satisfying (D_{δ}^{*}) above. Since $\{X - C'_{\alpha} : \alpha \in A\}$ is starcountable, $\{X - C'_{\alpha} : \alpha \in A\} \cup \{X - C_{\alpha_{0}}\}$ is a star-countable open cover of X for any fixed $\alpha_{0} \in A$. By Theorem 2.2 above we can partition A into subsets $\{A_{\beta} : \beta \in B\}$ satisfying the conditions (1)-(4).

Now $d_{\mathfrak{s}}(X, \rho) \leq n$ implies that for each $\beta \in B$ exist closed sets $B_{\beta(\alpha)}$, separating C_{α} and C'_{α} , for all $\alpha \in A_{\beta}$ such that order $\{B_{\beta(\alpha)} : \alpha \in A_{\beta}\} \leq n$. Hence $\{B_{\beta(\alpha)} : \alpha \in A_{\beta}, \beta \in B\}$ is a collection of closed sets satisfying $(D_{\mathfrak{s}}^*)$ above, so that $d_{\mathfrak{s}}^*(X, \rho) \leq n$.

3. The dimension function d_3^* .

Definition 3.1. Let (X, ρ) be a metric space. If $X=\emptyset$, then $d_3^*(X, \rho) = -1$. Otherwise, $d_3^*(X, \rho) \le n$ if (X, ρ) satisfies this condition:

 $(D_{\mathfrak{z}}^*)$ Given any collection of closed pairs $\{C_{\alpha}, C'_{\alpha} : \alpha \in A\}$ such that there exists $\delta > 0$ with

(1) $\rho(C_{\alpha}, C'_{\alpha}) > \delta$ for each $\alpha \in A$,

(2) $\{X - C'_{\alpha} : \alpha \in A\}$ is star-finite,

No. 4]

then there exist closed sets B_{α} , separating C_{α} and C'_{α} , such that order $\{B_{\alpha}: \alpha \in A\} \leq n.$

Theorem 3.2. Let (X, ρ) be a metric space. Then $d_s^*(X, \rho) \leq n$ if and only if every star-finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

Proof. Since $\{X - C'_{\alpha} : \alpha \in A\}$ is star-finite, then $\bigwedge_{\alpha \in A} \{X - C_{\alpha}, X - C'_{\alpha}\}$ is a star-finite Lebesgue cover of X. Hence the proof proceeds exactly as that of Theorem 4.2 in [7].

Corollary. Let (X, ρ) be a metric space. Then $d_3(X, \rho) \leq d_3^*(X, \rho)$ $\leq d_{\mathfrak{g}}(X, \rho).$

4. Weak sum theorems.

Definition 4.1. Let X be a topological space and \mathcal{G} be an open cover of X. We say that the \mathcal{Q} -dimension, denoted \mathcal{Q} -dim, of X is the smallest integer n such that \mathcal{G} has an open refinement of order $\leq n+1$. If no such integer exists, we say \mathcal{Q} -dim (X) is infinite; and \mathcal{Q} -dim (\emptyset) = -1.

K. Morita* [5] has shown the following:

Theorem 4.2. Let X be a normal space, $\{U_{\alpha}: \alpha \in A\}$ a locally finite open collection, and $\{F_{\alpha}: \alpha \in A\}$ a closed collection such that $F_{\alpha} \subset U_{\alpha}$ for each $\alpha \in A$. Let \mathcal{G} be any locally finite open cover of X such that \mathcal{G} -dim $(F_{\alpha}) \leq n$ for each $\alpha \in A$. If dim $(F_{\alpha} \cap F_{\beta}) \leq n-1$ for $\alpha \neq \beta$, then \mathcal{Q} -dim $(\bigcup_{\alpha} F_{\alpha}) \leq n$.

We generalize this to the following:

Theorem 4.3. Let X be a normal space, $\{U_{\alpha} : \alpha \in A\}$ a locally finite open collection, and $\{F_{\alpha}: \alpha \in A\}$ a closed collection such that $F_{\alpha} \subset U_{\alpha}$ for each $\alpha \in A$. Let \mathcal{G} be any locally finite open cover of X such that \mathcal{G} -dim $(F_{\alpha}) \leq n$ for each $\alpha \in A$. If dim $[bdry(F_{\alpha}) \cap F_{\beta}] \leq n-1$ for $\alpha \neq \beta$, then \mathcal{G} -dim $(\bigcup_{\alpha} F_{\alpha}) \leq n$.

Proof. Define for each positive integer k, A_k , to be the collection of all distinct subsets $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ of A with cardinality k such that $\bigcap_{\alpha_i}^{\kappa} F_{\alpha_i} \neq \emptyset.$ Define

$$\mathscr{H}_{k} = \{ \bigcap_{i=1}^{k} F_{\alpha_{i}} - \bigcup_{\beta \neq \alpha_{i}} \operatorname{int} (F_{\beta}) : \{ \alpha_{1}, \cdots, \alpha_{k} \} \in A_{k}, \beta \in A \},$$

and $\mathcal{H} = \bigcup_{k=1}^{\infty} = \{H_{\lambda}, \lambda \in \Lambda\}$. Clearly $H_{\lambda} \in \mathcal{H}$ implies H_{λ} is closed in X and there exists some F_{α} such that $H_{\lambda} \subset F_{\alpha}$.

Assertion 1. $\bigcup_{\lambda \in A} H_{\lambda} = \bigcup_{\alpha \in A} F_{\alpha}$. Let $x \in \bigcup_{\alpha \in A} F_{\alpha}$. Since $\{F_{\alpha} : \alpha \in A\}$ is locally finite there exists some

^{*)} The author wishes to thank Professor K. Morita for his helpful suggestions concerning this paper.

integer m > 0 such that the order of x with respect to $\{F_{\alpha} : \alpha \in A\}$ is equal to m. Hence by definition x belongs to some member of \mathcal{H}_m . Also $\{F_{\alpha} : \alpha \in A\}$ locally finite implies that \mathcal{H} is locally finite.

Assertion 2. Let H_{λ} and H_{μ} belong to \mathcal{H} such that $H_{\lambda} \neq H_{\mu}$. Then there exist distinct members F_{α} and F_{β} such that $H_{\lambda} \cap H_{\mu} \subset (\text{bdry } F_{\alpha})$ $\cap F_{\beta}$. This assertion is obvious if $H_{\lambda} \cap H_{\mu} = \emptyset$. Let $H_{\lambda} = \bigcap_{i=1}^{n} F_{\alpha_i}$ $- \bigcup_{\beta \neq \alpha_i} \text{int} (F_{\beta})$ and $H_{\mu} = \bigcap_{i=1}^{m} F_{\tau_i} - \bigcup_{\beta \neq \tau_i} \text{int} (F_{\beta})$. Since $H_{\lambda} \neq H_{\mu}$ we have $\{\alpha_1, \dots, \alpha_n\} \neq \{\gamma_1, \dots, \gamma_m\}$; so that either $\alpha_i \notin \{\gamma_1, \dots, \gamma_m\}$ for some $i \in \{1, 2, \dots, n\}$ or $\gamma_j \notin \{\alpha_1, \dots, \alpha_n\}$ for some $j \in \{1, 2, \dots, m\}$. Accordingly in either case we have $H_{\lambda} \cap H_{\mu} \subset (\text{bdry } F_{\alpha_i}) \cap F_{\tau_1}$ or $H_{\lambda} \cap H_{\mu} \subset (\text{bdry } F_{\tau_j})$ $\cap F_{\alpha_1}$.

Now by Assertion 2 we have dim $(H_{\lambda} \cap H_{\mu}) \leq \dim [(\operatorname{bdry} F_{\alpha}) \cap F_{\beta}]$ $\leq n-1.$ Since $\{U_{\alpha} : \alpha \in A\}$ is locally finite, we have that $\{\bigcap_{i=1}^{n} U_{\alpha_{i}} : \{\alpha_{1}, \dots, \alpha_{n}\} \in A_{n}, n=1, 2, \dots\}$ is locally finite collection of open subsets of X. Since $H_{\lambda} = \bigcap_{i=1}^{n} F_{\alpha_{i}} - \bigcup_{\beta \neq \alpha_{i}} \operatorname{int}(F_{\beta}) \subset \bigcap_{i=1}^{n} U_{\alpha_{i}}$ we have by Theorem 4.2 above \mathcal{Q} -dim $(\bigcup_{\alpha \in A} F_{\alpha}) = \mathcal{Q}$ -dim $(\bigcup_{\lambda \in A} H_{\lambda}) \leq n.$

Theorem 4.4. Let (X, ρ) be a metric space satisfying these conditions.

- (1) $X = \bigcup_{\alpha \in A} F_{\alpha}$, where F_{α} is closed in X.
- (2) $\{F_{\alpha}: \alpha \in A\}$ is locally finite.
- (3) $d_0(F_\alpha, \rho) \leq n \text{ for all } \alpha \text{ in } A.$
- (4) dim [(bdry F_{α}) $\cap F_{\beta}$] $\leq n-1$ for $\alpha \neq \beta$.
- Then $d_0(X, \rho) \leq n$.

Proof. Let $\varepsilon > 0$ be given. We want to find an open cover U of X such that ρ -mesh $(U) < \varepsilon$ and $\operatorname{ord}(U) \le n+1$. Since $d_0(F_\alpha, \rho) \le n$ for each α in A, there exists an open cover U_α of F_α such that ρ -mesh $(U_\alpha) < \varepsilon/2$ and $\operatorname{ord}(U_\alpha) \le n+1$. As before we can assume U_α is locally finite and hence we can shrink U_α to a closed cover of F_α which will then be a closed locally finite collection in X. Again since X is paracompact we may assume that U_α is a locally finite open collection in X such that ρ -mesh $U_\alpha < \varepsilon$ and $\operatorname{ord}(U_\alpha) \le n+1$. Define $U = \bigcup_{\alpha \in A} U_\alpha$. Clearly U is an open cover of X. Furthermore U can be assumed to be locally finite since $\{F_\alpha : \alpha \in A\}$ can be expanded to a locally finite collection $\{G_\alpha : \alpha \in A\}$, and we can restrict the collection U_α to G_α for each $\alpha \in A$. By Theorem 4.3, U has an open refinement \mathcal{O} of order $\le n+1$. Also ρ -mesh $(\mathcal{O}) \le \rho$ -mesh $(\mathcal{O}) < \varepsilon$, so that $d_0(X, \rho) \le n$.

Using the Lebesgue covering characterizations for each of the dimension functions d_2 , d_3 , d_3^* , d_6 , and d_7 it follows that Theorem 4.4

holds for these dimension functions in metric space as well as for normal uniform spaces. See [7] and [8].

References

- R. E. Hodel: Note on metric-dependent dimension functions. Fund. Math., 61, 83-89 (1967).
- [2] K. Morita: Star-finite coverings and the star-finite property. Math. Japanicae, 1, 60-68 (1948).
- [3] ——: On the dimension of normal spaces. I. Japan J. Math., 20, 5-36 (1950).
- [4] —: On the dimension of normal spaces. II. J. Math. Soc. Japan, 2, 16– 33 (1950).
- [5] ----: On the dimension of product spaces. Amer. J. Math., 65 (1953).
- [6] J. Nagata: Modern Dimension Theory. Interscience, New York (1965).
- [7] J. C. Smith: Characterizations of metric-dependent dimension functions. Proceedings of Amer. Math. Soc., 19 (6), 1264-1269 (1968).
- [8] ——: Lebesque characterizations of uniformity-dimension functions. Proceedings of Amer. Math. Soc., 22 (1), 164–169 (1969).
- [9] —: Refinements of Lebesgue covers, accepted for publication to Fund. Math. (1969).