85. Other Characterizations and Weak Sum Theorems for Metric-dependent Dimension Functions

By J. C. Smith
(Comm. by Kinjirô Kunugi, m. J. A., April 13, 1970)

1. Introduction. In [7] and [8] the author introduced the metricdependent dimension functions d_{6} and d_{7} and characterized them in terms of Lebesgue covers of metric spaces and for uniform spaces. The results for metric spaces are the following.

Theorem 1.1. Let (X, ρ) be a metric space. Then $d_{6}(X, \rho) \leq n$ if and only if every countable Lebesgue cover has an open refinement of order $\leq n+1$.

Theorem 1.2. Let (X, ρ) be a metric space. Then $d_{7}(X, \rho) \leq n$ if and only if every locally finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

A natural question now arises as to whether new metric-dependent dimension functions occur if "countable" and "locally finite" in the above characterization theorems are replaced by "star-countable" and "point finite" respectively. In $\S 2$ we define two such new dimension functions, d_{6}^{*} and d_{7}^{*}, and prove that $d_{6}^{*}=d_{6}$ and $d_{7}^{*}=d_{7}$. We also show that the dimension function d_{5} of Hodel [1] has a "star-countable" equivalent definition. In §3 we introduce a new metric-dependent dimension function d_{3}^{*}, characterize it in terms of Lebesgue covers, and observe the following inequality $d_{3} \leq d_{3}^{*} \leq d_{6}$. In $\S 4$ we generalize a sum theorem of Morita and establish "weak" locally finite sum theorems for $d_{2}, d_{3}, d_{3}^{*}, d_{6}, d_{7}$ and d_{0} in both metric and uniform spaces.
2. Equivalent characterization for \boldsymbol{d}_{6} and d_{7}.

Definition 2.1. Let (X, ρ) be a metric space. Then $d_{6}^{*}(X, \rho) \leq n$ if and only if every star-countable Lebesgue cover of X has an open refinement of order $\leq n+1$.

We note that $d_{6}(X, \rho) \leq d_{6}^{*}(X, \rho)$ by Definition 2.1 and Theorem 1.1. By a similar technique as in Theorem 2 of [2] by Morita we have the following.

Theorem 2.2. Let $\mathcal{G}=\left\{G_{\alpha}: \alpha \in A\right\}$ be a star-countable open cover of a T_{1} space X. We divide the index set A into subsets $\left\{A_{\beta}: \beta \in B\right\}$ such that α and γ belong to A_{β} if and only if there exists a positive integer n such that $G_{\alpha} \subset \operatorname{St}^{n}\left(G_{r}, \mathcal{G}\right)$. Define $X_{\beta}=\bigcup_{\alpha \in A_{\beta}} G_{\alpha}$. Then we have the following
(1) $X=\bigcup_{\beta \in B} X_{\beta}$
(2) $X_{\beta} \cap X_{\beta^{\prime}}=\emptyset$ for $\beta \neq \beta^{\prime}$
(3) X_{β} is open and closed in X for each $\beta \in B$.
(4) $\mathcal{G}_{\beta}=\left\{G_{\alpha}: \alpha \in A_{\beta}\right\}$ is a countable open cover of X_{β} for each $\beta \in B$.

Theorem 2.3. Let (X, ρ) be a metric space. Then $d_{6}(X, \rho)$ $=d_{6}^{*}(X, \rho)$.

Proof. Assume $d_{6}(X, \rho) \leq n$. Let $G=\left\{G_{\alpha}: \alpha \in A\right\}$ be a starcountable Lebesgue cover of (X, ρ). By Theorem 2.2 above the index set A can be partitioned into subsets $\left\{A_{\beta}: \beta \in B\right\}$, satisfying the conditions (1)-(4), where each \mathcal{G}_{β} is a countable Lebesgue cover of X_{β}.

Since $d_{6}(X, \rho) \leq n, d_{6}\left(X_{\beta}, \rho\right) \leq n$ for each $\beta \in B$; so that \mathcal{G}_{β} has an open refinement U_{β} such that order $\left(U_{\beta}\right) \leq n+1$ for each $\beta \in B$. Therefore $U=\bigcup_{\beta \in B} \mathcal{U}_{\beta}$ is an open refinement of \mathcal{G} and order $(U) \leq n+1$. Hence $d_{6}^{*}(X, \rho) \leq n$.

Corollary. Let (X, ρ) be a metric space. Then $d_{6}(X, \rho) \leq n$ if and only if every star-countable Lebesgue cover of X has an open refinement of order $\leq n+1$.

By a similar proof as in [8] we obtain the following.
Theorem 2.4. Let (X, \mathcal{U}) be a normal uniform space. Then $d_{6}(X, \mathcal{U}) \leq n$ if and only if every star-countable Lebesgue cover of X has an open refinement of order $\leq n+1$.

We now consider the metric-dependent dimension function similar to d_{7}, which is defined in [7].

Definition 2.5. The dimension function d_{7}^{*} is defined like d_{7} in [7] with the exception that $\left\{X-C_{\alpha}^{\prime}: \alpha \in A\right\}$ is point finite.

Definition 2.6. Let X be a set and $\mathcal{G}=\left\{\mathcal{G}_{\lambda}: \lambda \in \Lambda\right\}$ be a collection of families of subsets of X. For each $\lambda \in \Lambda$, let $\mathcal{G}_{\lambda}=\left\{G_{\alpha}: \alpha \in A_{\lambda}\right\}$. Then

$$
\widehat{\lambda \in \Lambda}\left\{\mathcal{G}_{\lambda}\right\}=\left\{\cap G_{\alpha(\lambda)}: \alpha(\lambda) \in A_{\lambda}, \lambda \in \Lambda\right\}
$$

Lemma. Let X be a normal space, $\left\{G_{\alpha}: \alpha \in A\right\}$ a point finite open collection, and $\left\{F_{\alpha}: \alpha \in A\right\}$ a closed collection such that $F_{\alpha} \subset G_{\alpha}$ for each $\alpha \in A$. If $\mathcal{G}=\wedge_{\alpha \in A}\left\{G_{\alpha}, X-F_{\alpha}\right\}$ has an open refinement of order $\leq n+1$, then there exist closed sets B_{α}, separating F_{α} and $X-G_{\alpha}$ for each $\alpha \in A$ such that order $\left\{B_{\alpha}: \alpha \in A\right\} \leq n$.

Proof. Since $\left\{G_{\alpha}: \alpha \in A\right\}$ is point finite it is clear that $\mathcal{G}=\widehat{\alpha \in A}\left\{G_{\alpha}, X\right.$ $\left.-F_{\alpha}\right\}$ is a point finite cover of X. If $C V=\left\{V_{\delta}: \delta \in \Delta\right\}$ is an open refinement of \mathcal{G} of order $\leq n+1$ we may assume that $C V$ is also point finite. Note that given $V \in C V$, then V intersects at most a finite number of the F_{α}. For if $V \cap F_{\alpha} \neq \emptyset$, then $V \subseteq G_{\alpha}$ and $\left\{G_{\alpha}: \alpha \in A\right\}$ is point finite. Since $C V$ is point finite and X is normal, there exists a closed cover $\mathscr{D}=\left\{D_{\dot{\delta}}: \delta \in \Delta\right\}$ such that $D_{\dot{\delta}} \subset V_{\delta}$ for each $\delta \in \Delta$. The remainder of the proof is essentially the same as $[6, \mathrm{II}, 5, B]$.

Theorem 2.7. Let (X, ρ) be a metric space. Then $d_{7}^{*}(X, \rho) \leq n$
if and only if every point finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

Proof. Using the previous lemma, the proof proceeds as that of Theorem 4.2 in [7].

In [9] the author has shown the following.
Theorem 2.8. Let (X, ρ) be a metric space. If \mathcal{G} is a point finite Lebesgue cover of X, then G has a locally finite Lebesgue refinement.

Hence the following is clear.
Corollary. Let (X, ρ) be a metric space. Then $d_{7}(X, \rho)=d_{7}^{*}(X, \rho)$.
As was the case for d_{6} above we now have:
Theorem 2.9. Let (X, \mathcal{U}) be a normal uniform space. Then $d_{7}(X, \mathcal{Q}) \leq n$ if and only if every point finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

In [1] Hodel introduced the metric dependent dimension function d_{5}. We now observe that d_{5} has an alternate definition.

Definition 2.10. Let (X, ρ) be a metric space. if $X=\emptyset, d_{5}^{*}(X, \rho)$ $=-1$. Otherwise, $d_{5}^{*}(X, \rho) \leq n$ if (X, ρ) satisfies this condition:
(D_{5}^{*}) Given any collection of closed pairs $\left\{C_{\alpha}, C_{\alpha}^{\prime}: \alpha \in A\right\}$ such that there exists $\delta>0$ with
(1) $\rho\left(C_{\alpha}, C_{\alpha}^{\prime}\right)>0$ for each $\alpha \in A$,
(2) $\left\{X-C_{\alpha}^{\prime}: \alpha \in A\right\}$ is star countable,
then there exist closed sets B_{α}, separating C_{α} and C_{α}^{\prime}, such that order $\left\{B_{\alpha}: \alpha \in A\right\} \leq n$.

Note that $d_{5}(X, \rho) \leq d_{5}^{*}(X, \rho)$ by definition.
Theorem 2.11. Let (X, ρ) be a metric space. Then $d_{5}(X, \rho)$ $=d_{5}^{*}(X, \rho)$.

Proof. Assume $d_{5}(X, \rho) \leq n$ and $\left\{C_{\alpha}, C_{\alpha}^{\prime}: \alpha \in A\right\}$ is any collection of closed pairs satisfying $\left(D_{5}^{*}\right)$ above. Since $\left\{X-C_{\alpha}^{\prime}: \alpha \in A\right\}$ is starcountable, $\left\{X-C_{\alpha}^{\prime}: \alpha \in A\right\} \cup\left\{X-C_{\alpha_{0}}\right\}$ is a star-countable open cover of X for any fixed $\alpha_{0} \in A$. By Theorem 2.2 above we can partition A into subsets $\left\{A_{\beta}: \beta \in B\right\}$ satisfying the conditions (1)-(4).

Now $d_{5}(X, \rho) \leq n$ implies that for each $\beta \in B$ exist closed sets $B_{\beta(\alpha)}$, separating C_{α} and C_{α}^{\prime}, for all $\alpha \in A_{\beta}$ such that order $\left\{B_{\beta(\alpha)}: \alpha \in A_{\beta}\right\} \leq n$. Hence $\left\{B_{\beta(\alpha)}: \alpha \in A_{\beta}, \beta \in B\right\}$ is a collection of closed sets satisfying (D_{5}^{*}) above, so that $d_{5}^{*}(X, \rho) \leq n$.
3. The dimension function d_{3}^{*}.

Definition 3.1. Let (X, ρ) be a metric space. If $X=\emptyset$, then $d_{3}^{*}(X, \rho)=-1$. Otherwise, $d_{3}^{*}(X, \rho) \leq n$ if (X, ρ) satisfies this condition:
(D_{3}^{*}) Given any collection of closed pairs $\left\{C_{\alpha}, C_{\alpha}^{\prime}: \alpha \in A\right\}$ such that there exists $\delta>0$ with
(1) $\rho\left(C_{\alpha}, C_{\alpha}^{\prime}\right)>\delta$ for each $\alpha \in A$,
(2) $\left\{X-C_{\alpha}^{\prime}: \alpha \in A\right\}$ is star-finite,
then there exist closed sets B_{α}, separating C_{α} and C_{α}^{\prime}, such that order $\left\{B_{\alpha}: \alpha \in A\right\} \leq n$.

Theorem 3.2. Let (X, ρ) be a metric space. Then $d_{3}^{*}(X, \rho) \leq n$ if and only if every star-finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

Proof. Since $\left\{X-C_{\alpha}^{\prime}: \alpha \in A\right\}$ is star-finite, then $\underset{\alpha \in A}{\wedge}\left\{X-C_{\alpha}, X-C_{\alpha}^{\prime}\right\}$ is a star-finite Lebesgue cover of X. Hence the proof proceeds exactly as that of Theorem 4.2 in [7].

Corollary. Let (X, ρ) be a metric space. Then $d_{3}(X, \rho) \leq d_{3}^{*}(X, \rho)$ $\leq d_{6}(X, \rho)$.
4. Weak sum theorems.

Definition 4.1. Let X be a topological space and \mathcal{G} be an open cover of X. We say that the \mathcal{G}-dimension, denoted \mathcal{G}-dim, of X is the smallest integer n such that G has an open refinement of order $\leq n+1$. If no such integer exists, we say \mathcal{G}-dim (X) is infinite ; and \mathcal{G}-dim (\emptyset) $=-1$.
K. Morita* [5] has shown the following:

Theorem 4.2. Let X be a normal space, $\left\{U_{\alpha}: \alpha \in A\right\}$ a locally finite open collection, and $\left\{F_{\alpha}: \alpha \in A\right\}$ a closed collection such that $F_{\alpha} \subset U_{\alpha}$ for each $\alpha \in A$. Let \mathcal{G} be any locally finite open cover of X such that \mathcal{G}-dim $\left(F_{\alpha}\right) \leq n$ for each $\alpha \in A$. If $\operatorname{dim}\left(F_{\alpha} \cap F_{\beta}\right) \leq n-1$ for $\alpha \neq \beta$, then \mathcal{G}-dim $\left(\bigcup_{\alpha \in A} F_{\alpha}\right) \leq n$.

We generalize this to the following:
Theorem 4.3. Let X be a normal space, $\left\{U_{\alpha}: \alpha \in A\right\}$ a locally finite open collection, and $\left\{F_{\alpha}: \alpha \in A\right\}$ a closed collection such that $F_{\alpha} \subset U_{a}$ for each $\alpha \in A$. Let \mathcal{G} be any locally finite open cover of X such that \mathcal{G} - $\operatorname{dim}\left(F_{\alpha}\right) \leq n$ for each $\alpha \in A$. If $\operatorname{dim}\left[b d r y\left(F_{\alpha}\right) \cap F_{\beta}\right] \leq n-1$ for $\alpha \neq \beta$, then \mathcal{G}-dim $\left(\bigcup_{\alpha \in A} F_{\alpha}\right) \leq n$.

Proof. Define for each positive integer k, A_{k}, to be the collection of all distinct subsets $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right\}$ of A with cardinality k such that $\bigcap_{i=1}^{k} F_{\alpha_{i}} \neq \emptyset$. Define

$$
\mathcal{H}_{k}=\left\{\bigcap_{i=1}^{k} F_{\alpha_{i}}-\bigcup_{\beta \neq \alpha_{i}} \operatorname{int}\left(F_{\beta}\right):\left\{\alpha_{1}, \cdots, \alpha_{k}\right\} \in A_{k}, \beta \in A\right\},
$$

and $\mathscr{F}=\bigcup_{k=1}^{\infty}=\left\{H_{\lambda}, \lambda \in \Lambda\right\}$. Clearly $H_{\lambda} \in \mathscr{H}$ implies H_{λ} is closed in X and there exists some F_{α} such that $H_{\lambda} \subset F_{\alpha}$.

Assertion 1. $\bigcup_{\lambda \in A} H_{\lambda}=\bigcup_{\alpha \in A} F_{\alpha}$.
Let $x \in \bigcup_{\alpha \in A} F_{\alpha}$. Since $\left\{F_{\alpha}: \alpha \in A\right\}$ is locally finite there exists some

[^0]integer $m>0$ such that the order of x with respect to $\left\{F_{\alpha}: \alpha \in A\right\}$ is equal to m. Hence by definition x belongs to some member of \mathcal{H}_{m}. Also $\left\{F_{\alpha}: \alpha \in A\right\}$ locally finite implies that \mathscr{G} is locally finite.

Assertion 2. Let H_{λ} and H_{μ} belong to \mathscr{G} such that $H_{\lambda} \neq H_{\mu}$. Then there exist distinct members F_{α} and F_{β} such that $H_{\lambda} \cap H_{\mu} \subset\left(\right.$ bdry $\left.F_{\alpha}\right)$ $\cap \boldsymbol{F}_{\beta}$. This assertion is obvious if $H_{\lambda} \cap H_{\mu}=\emptyset$. Let $H_{\lambda}=\bigcap_{i=1}^{n} F_{\alpha_{i}}$ $-\bigcup_{\beta \neq \alpha_{i}} \operatorname{int}\left(F_{\beta}\right)$ and $H_{\mu}=\bigcap_{i=1}^{m} F_{r_{i}}-\bigcup_{\beta \neq r_{i}} \operatorname{int}\left(F_{\beta}\right)$. Since $H_{\lambda} \neq H_{\mu}$ we have $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\} \neq\left\{\gamma_{1}, \cdots, \gamma_{m}\right\}$; so that either $\alpha_{i} \notin\left\{\gamma_{1}, \cdots, \gamma_{m}\right\}$ for some $i \in\{1,2, \cdots, n\}$ or $\gamma_{j} \notin\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ for some $j \in\{1,2, \cdots, m\}$. Accordingly in either case we have $H_{\lambda} \cap H_{\mu} \subset\left(\right.$ bdry $\left.F_{\alpha_{i}}\right) \cap F_{r_{1}}$ or $H_{\lambda} \cap H_{\mu} \subset\left(\right.$ bdry $\left.F_{r_{j}}\right)$ $\cap F_{\alpha_{1}}$.

Now by Assertion 2 we have $\operatorname{dim}\left(H_{\lambda} \cap H_{\mu}\right) \leq \operatorname{dim}\left[\left(\operatorname{bdry} F_{\alpha}\right) \cap F_{\beta}\right]$ $\leq n-1$. Since $\left\{U_{\alpha}: \alpha \in A\right\}$ is locally finite, we have that $\left\{\bigcap_{i=1}^{n} U_{\alpha_{i}}:\left\{\alpha_{1}\right.\right.$, $\left.\left.\cdots, \alpha_{n}\right\} \in A_{n}, n=1,2, \cdots\right\}$ is locally finite collection of open subsets of X. Since $H_{\lambda}=\bigcap_{i=1}^{n} F_{\alpha_{i}}-\bigcup_{\beta \neq \alpha_{i}} \operatorname{int}\left(F_{\beta}\right) \subset \bigcap_{i=1}^{n} U_{\alpha_{i}}$ we have by Theorem 4.2 above \mathcal{G}-dim $\left(\bigcup_{\alpha \in A} F_{\alpha}\right)=\mathcal{G}$-dim $\left(\bigcup_{\lambda \in A} H_{\lambda}\right) \leq n$.

Theorem 4.4. Let (X, ρ) be a metric space satisfying these conditions.
(1) $X=\bigcup_{\alpha \in A} F_{\alpha}$, where F_{α} is closed in X.
(2) $\left\{F_{\alpha}: \alpha \in A\right\}$ is locally finite.
(3) $d_{0}\left(F_{\alpha}, \rho\right) \leq n$ for all α in A.
(4) $\operatorname{dim}\left[\left(b d r y F_{\alpha}\right) \cap F_{\beta}\right] \leq n-1$ for $\alpha \neq \beta$.

Then $d_{0}(X, \rho) \leq n$.
Proof. Let $\varepsilon>0$ be given. We want to find an open cover Q of X such that ρ-mesh $(U)<\varepsilon$ and $\operatorname{ord}(U) \leq n+1$. Since $d_{0}\left(F_{\alpha}, \rho\right) \leq n$ for each α in A, there exists an open cover \bigcup_{α} of F_{α} such that ρ-mesh $\left(U_{\alpha}\right)<\varepsilon / 2$ and ord $\left(\cup_{\alpha}\right) \leq n+1$. As before we can assume U_{α} is locally finite and hence we can shrink \mathcal{U}_{α} to a closed cover of F_{α} which will then be a closed locally finite collection in X. Again since X is paracompact we may assume that U_{α} is a locally finite open collection in X such that ρ-mesh $\bigcup_{\alpha}<\varepsilon$ and ord $\left(U_{\alpha}\right) \leq n+1$. Define $U=\bigcup_{\alpha \in A} U_{\alpha}$. Clearly \mathcal{U} is an open cover of X. Furthermore U can be assumed to be locally finite since $\left\{F_{\alpha}: \alpha \in A\right\}$ can be expanded to a locally finite collection $\left\{G_{\alpha}: \alpha \in A\right\}$, and we can restrict the collection \mathcal{U}_{α} to G_{α} for each $\alpha \in A$. By Theorem 4.3, U has an open refinement $C V$ of order $\leq n+1$. Also ρ-mesh $(\subset) \leq \rho$-mesh $(U)<\varepsilon$, so that $d_{0}(X, \rho) \leq n$.

Using the Lebesgue covering characterizations for each of the dimension functions $d_{2}, d_{3}, d_{3}^{*}, d_{6}$, and d_{7} it follows that Theorem 4.4
holds for these dimension functions in metric space as well as for normal uniform spaces. See [7] and [8].

References

[1] R. E. Hodel: Note on metric-dependent dimension functions. Fund. Math., 61, 83-89 (1967).
[2] K. Morita: Star-finite coverings and the star-finite property. Math. Japanicae, 1, 60-68 (1948).
[3] -: On the dimension of normal spaces. I. Japan J. Math., 20, 5-36 (1950).
[4] -: On the dimension of normal spaces. II. J. Math. Soc. Japan, 2, 1633 (1950).
[5] -: On the dimension of product spaces. Amer. J. Math., 65 (1953).
[6] J. Nagata: Modern Dimension Theory. Interscience, New York (1965).
[7] J. C. Smith: Characterizations of metric-dependent dimension functions. Proceedings of Amer. Math. Soc., 19 (6), 1264-1269 (1968).
[8] -: Lebesque characterizations of uniformity-dimension functions. Proceedings of Amer. Math. Soc., 22 (1), 164-169 (1969).
[9] -: Refinements of Lebesgue covers, accepted for publication to Fund. Math. (1969).

[^0]: *) The author wishes to thank Professor K. Morita for his helpful suggestions concerning this paper.

