79. On the Existence of a Potential Theoretic Measure with Infinite Norm

By Shirô OGAWA

Department of Engineering, Kobe University

(Comm. by Kinjirô KUNUGI, M. J. A., April 13, 1970)

Introduction. Let \mathbb{R}^m be the *m*-dimensional Euclidian space and $\phi(x, y)$ a lower semi-continuous function from $\mathbb{R}^m \times \mathbb{R}^m$ into $[0, +\infty]$. The ϕ -potential of a positive Radon measure μ in \mathbb{R}^m is defined by

$$\phi\mu(x) = \int \phi(x, y) d\mu(y).$$

In the case that there exists at least such a positive measure ν that the support $S\nu$ is compact and the potential $\phi\nu(x)$ is continuous in the whole space \mathbb{R}^m , we can consider the following classes of measures;

 $\mathcal{F}(\phi) = \{ \mathbf{v} ; \mathbf{v} \geq 0, S\mathbf{v} \text{ compact and } \phi\mathbf{v}(x) \text{ continuous in } \mathbb{R}^m \},\$

 $\mathcal{G}(\phi) = \left\{ \mu \ ; \ \mu \geq 0 \quad and \quad \int \phi \, \mu d\nu < + \infty \quad for \ any \quad \nu \in \mathcal{F}(\phi) \right\}.$

The aim of this paper is to answer affirmatively for a question posed by G. Anger [1]: Let $\phi_N(x, y)$ be the Newtonian kernel defined in \mathbb{R}^m $(m \geq 3)$. Is there a measure $\mu \in \mathcal{G}(\phi_N)$ with infinite norm? Moreover we study the same problem in case of α -kernel $\phi_\alpha(x, y)$.

1. Existence of a measure $\mu \in \mathcal{G}(\phi_N)$ with infinite norm.

The Newtonian kernel $\phi_N(x, y)$ in \mathbb{R}^m $(m \ge 3)$ is defined by

$$\phi_N(x,y) = |x-y|^{2-m},$$

where |x-y| denotes the distance between two points x and y in \mathbb{R}^m . Let $B_{a,r}$ be the closed ball with the center a and the radius r and $S_{a,r}$ the surface of the ball $B_{a,r}$. We introduce the class of measures

 $S = \{\lambda; spherical distribution with uniform density\}.$

Especially the spherical distribution with uniform density on $S_{a,r}$ is denoted by $\lambda_{a,r}$. It is well known that S is a non empty subset of $\mathcal{F}(\phi_N)$. Let us recall following potential theoretic principles,

Maximum principle: If it holds that, for a constant V, $\phi\nu(x) \leq V$ on the support $S\nu$ of a positive measure ν , then we have the same inequality in the whole space.

Domination principle: If it holds that, for a positive measure ν and an energy finite positive measure μ , $\phi\mu(x) \leq \phi\nu(x)$ on the support $S\mu$, then we have the same inequality in the whole space.

Lemma 1. For a given positive measure μ , the mutual energy $\int \phi_N \mu d\nu$ is finite for any $\nu \in \mathcal{F}(\phi_N)$ if $\int \phi_N \mu d\lambda$ is finite for any $\lambda \in S$.

S. OGAWA

Proof. It is sufficient to show that, for any $\nu \in \mathcal{F}(\phi_N)$, we can choose such a suitable measure $\lambda \in S$ that $\phi_N \lambda(x) \ge \phi_N \nu(x)$ in the whole space \mathbb{R}^m . The Newtonian kernel satisfying the maximum principle, the potential $\phi_N \nu(x)$ of a measure ν attains the maximum on the compact support $S\nu$. Let $\lambda_{a,r}$ be the spherical distribution with uniform density and the total mass M > 0. It is well known that

(*)
$$\phi_N \lambda_{a,r}(x) = \begin{cases} \frac{M}{r^{m-2}} & \text{in } B_{a,r} \\ \frac{M}{|x-a|^{m-2}} & \text{otherwise.} \end{cases}$$

Consequently, choosing a suitable center a, a radius r and a sufficiently large total mass M, we can pick up such a measure $\lambda_{a,r}$ that the corresponding ball $B_{a,r}$ contains the compact support $S\nu$ and $\phi_N\lambda_{a,r}(x)$ $\geq \phi_N\nu(x)$ on $S\nu$. The Newtonian kernel satisfying the domination principle, it follows that

$$\phi_N \mu_{a,r}(x) \ge \phi_N \nu(x)$$
 in the whole space R^m .
Lemma 2. Let μ_s be the measure
 $\mu_s = \sum_{n=1}^{+\infty} n^{m-s} \mu_n$ for any real number $s \ (3 < s \le 1+m)$,

where μ_n denotes a unit point mass on the sphere $S_{0,n}$ with the center the origin 0 and the radius n. Then μ_s is a positive Radon measure with infinite norm and we have $\int \phi_N \mu d\lambda < +\infty$ for any $\lambda \in S$.

Proof. It is obvious that μ_s is a positive Radon measure and, owing to $s-m \leq 1$, we have

$$\|\mu_s\|=\mu_s(R^m)=\sum_{n=1}^{+\infty}n^{m-s}=+\infty$$
 for any s.

On account of (*), we have, for a measure $\lambda_{a,r}$ with the norm M,

$$\begin{split} \int \phi_N \mu_s d\lambda_{a,r} &= \int \phi_N \lambda_{a,r} d\mu_s \\ &= \int_{B_{a,r}} \phi_N \lambda_{a,r} d\mu_s + \int_{R^m - B_{a,r}} \phi_N \lambda_{a,r} d\mu_s \\ &= \sum_{|n-a| \leq r} \frac{M}{r^{m-2}} \cdot \frac{1}{n^{s-m}} \\ &+ \sum_{|n-a| > r} \frac{M}{|n-a|^{m-2}} \cdot \frac{1}{n^{s-m}} \\ &< + \infty, \end{split}$$

because the first summation of the right hand side is obviously finite and the second summation is the same order of $\sum_{i=1}^{+\infty} n^{2-s}$.

By Lemmas 1 and 2, we have immediately the following theorem. Theorem 1. The measure in Lemma 2

$$\mu_s = \sum_{n=1}^{+\infty} n^{m-s} \mu_n$$

is an element of $\mathcal{G}(\phi_N)$ with infinite norm.

Remark. H. Cartan [2] characterised the class of measures $\mathcal{Q}(\phi_N)$: A measure μ is an element of $\mathcal{Q}(\phi_N)$ if and only if $\phi_N \mu(x) \neq +\infty$. The above theorem shows that there are infinitely many positive measures μ_s with infinite norm that $\phi_N \mu_s(x) \neq +\infty$.

2. Existence of a measure $\mu \in \mathcal{G}(\phi_{\alpha})$ with infinite norm.

The α -kernel $\phi_{\alpha}(x, y)$ in \mathbb{R}^m is defined by

$$\phi_{\alpha}(x,y) = |x-y|^{\alpha-m}$$

where α is any real number such as $0 < \alpha < m$. O. Frostman [3] studied deeply the α -potential and proved many remarkable theorems. Above all, we start from his following theorem: Given a closed region F of which the boundary satisfies the Poincaré's condition, there exists a positive measure γ with unit mass and supported by F of which the potential $\phi_{a}\gamma(x)$ is a positive constant V on F and is continuous in \mathbb{R}^m . We shall say such a measure the equilibrium measure on F. This shows that $\mathcal{F}(\phi_a)$ is not empty and we can consider the class of measures

 $U(\phi_{\alpha}) = \{Equilibrium \text{ measure on all balls in } R^m\}.$

Especially the equilibrium measure on the ball $B_{a,r}$ is denoted by $\gamma_{a,r}$. Lemma 3. For a given positive measure μ , the mutual energy

 $\int \! \phi_{\alpha} \mu d\nu \text{ is finite for any } \nu \in \mathcal{F}(\phi_{\alpha}) \text{ if } \int \! \phi_{\alpha} \mu d\gamma \text{ is finite for any } \gamma \in \mathcal{U}(\phi_{\alpha}).$

Proof. By the analogous way in the demonstration of Lemma 1, we can choose such a measure $\gamma \in \mathcal{U}(\phi_{\alpha})$ that, for a suitable positive number $t, t\phi_{\alpha}\gamma(x) \geq \phi_{\alpha}\nu(x)$ in \mathbb{R}^m , because the α -kernel also satisfies the maximum and domination principles.

Lemma 4. For any index α such as $0 < \alpha \leq 2$, any positive number t and any measure $\gamma \in \mathcal{U}(\phi_{\alpha})$, there exists such a spherical distribution with uniform density λ that $\phi_N \lambda(x) \geq t \phi_{\alpha} \gamma(x)$ in \mathbb{R}^m .

Proof. For any index α such as $0 < \alpha \leq 2$, the α -potential of a positive measure ν is subharmonic in the complementary set of the support $S\nu$. On the other hand, the Newtonian potential of a positive measure is superharmonic in \mathbb{R}^m . So, in order to prove this lemma, it is sufficient to show that, for any positive number t and any measure $\gamma_{a,r} \in \mathcal{U}(\phi_{\alpha})$, there exists a suitable measure $\lambda \in S$ that $\phi_N \lambda(x) \geq t \phi_{\alpha} \gamma_{a,r}(x)$ on the sphere $S_{a,r}$, the boundary of $B_{a,r}$. Owing to (*) and choosing $\lambda_{a,r} \in S$ with a sufficiently large total mass M, we can make the value of $\phi_N \lambda_{a,r}(x)$ on $S_{a,r}$ larger than that of $t \phi_{\alpha} \gamma_{a,r}(x)$ on the sphere.

By Lemmas 2, 3 and 4, we have the following theorem.

Theorem 2. The measure in Lemma 2

$$\mu_s = \sum_{n=1}^{+\infty} n^{s-m} \mu_n$$

is also an element of $\mathcal{G}(\phi_{\alpha})$ (0< $\alpha \leq 2$) with infinite norm.

References

- G. Anger: Funktionalanalytische Betrachtungen bei Differential gleichungen unter Verwendung von Methoden der Potentialtheorie. I. Akademie-Verlag, Berlin (1967).
- [2] H. Cartan: Théorie générale du balayage en potentiel newtonien. Ann. Univ. Grenoble, **22** (1946).
- [3] O. Frostman: Potentiel d'équilibre et capacité des ensembles. Lund (1935).