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75. PP.spaces over Banach Spaces and an Application™

By Noboru YAMAMOTO
College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., April 13, 1970)

1. Polynomial maps (more generally, analytic maps) of Banach
spaces have been studied by several authors [1], [2]. In this note we
shall study a polynomial map by factoring into a composition of a
linear map and a map looks like the exponential map. For this purpose
we shall define a new Banach space I?E over a Banach space E. This
treatment of polynomial maps enable us to reduce some problems on
polynomial maps to the well known facts on linear maps. As a simple
example we shall give a proof of the regularity theorem for a solution
of semi-linear polynomial elliptic differential equation.

Let E be a real or complex Banach space with norm || ||. We
shall denote by E®" the completion of the »n' tensor power of E with
respect to the projective topology. The norm | |, of « in E®" is defined
by [[@]l,=inf {Z[j2®| - - - 2P| |2= Z2f®- - - Qz}.

Let I?PE(1 <p <o) be the completion of the (algebraic) vector space
né—)lE‘X’" with the I?-norm | [i;» defined by ||z|2,= 3|2 |2, for =X z,,

2z, € E®". Thus an element x of [?E can be written as an infinite sum
x=> x, of elements x, ¢ E®", 1t is clear that [’E is a Banach space.
As usual, we have I?PEClF if p<q and the inclusion is continuous.
Note that if E=R or C, I?E is canonically isomorphic to the ordinary
I*-space. If E is a separable Hilbert space, we can define an inner
product in £ which then is again a Hilbert space.

Let E'®" be the subspace of symmetric elements of E®”, the Banach

subspace I?E of [?E is defined to be the completion of éE‘?” with the
n=1

[P-norm.

For two Banach spaces E and F, the following proposition is
easily proved.

Proposition 1. (1) I"(E@F)CI?PE®I*F, IX(E®F)CPPE®IFF. (2)
P(EQF)=IPEQIPF, IN(EQF)=IPEQIPF. (3) If E is finite dimensional
and p>1, (IPEY =1'E’ and (IPEY =I2E’, where E' is the dual space of E

and l-l-—1—=1.
P q

A Banach space E is a Banach algebra if there is a continuous
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linear map p: EQE—E such that |¢|| <1 and p(p®idg)= p(id Q).
Then we can define a linear map y,: E®"—E, for n=3, such that
Il el €1 and p(ptn-i @ p) = p(p,Qidy) for 1<i<n where p,=p and
=1z, Let m:IPE—E be a map defined by m(Xx,)=72] (),
x, € E®, then m is a continuous linear map with ||m|<1. We also
define a continuous linear map m,: I?E—FE by m,=m|I?E.

Let E and F be Banach spaces and f;: E—F (i=1, - - -, n) be continu-
ous linear maps, then a continuous linear map f,®---Q f,: E®"—F®"
is defined by (fi®:: - ®f )(XaPQ- . - QuP)=F fi(@(")Q- - - fr(P).
In fact we have | fi®- - - QfullZISill: -1 fell- If f: E—F is a linear
map with || f|| <1, we can define a linear map I°f: I?PE—I?F by (I*f)
Lz =2, f®(x,), ©, € E®, where f®"= Q.. -Qf (n copies). Then we
have ||I?f||=||f|l, and hence I?f is continuous. It is easily seen that
(IPfYIPE)CIPF, and [P(gof)=1?gol7f for linear maps f: E—F and g: F
—G of Banach spaces with || f||<1 and | 9| Z1.

Let U(E) be the group of linear isometries of E, and [?PU(E)
={l*f|f e UE)}. Then we have

Proposition 2. [PU(E) is a closed subgroup of the group U(IPE)
of linear isometries of IPE.

Let f: E—F be a (not necessarily linear) map of Banach spaces.
Then f is differentiable at x,c E if there is a continuous linear map
df(x): E—-F such that lim I/ @+ v)— f (@) — df (@)@ ||»)/|v]z=0.

The i derivative d*f: E—L¥E, F) (= L(E®*, F)) is defined inductively
by d*f=d(d*-'f), and f is of class C* if d*f is continuous. It is easily
verified that d*(f,®- - - f,) =2d*f,&®. . -@d*=f,, where the sum ranges
over all n-tuples (k,, - - -, k,) of non-negative integers with k,+ ...+ k,
=k. If dimE=m<oo, the partial derivatives D,f:FE—L(F,R)
(=1, ...,m) is similarly defined and we have D*(f,®. . -Qf.)
=1Df®...®Df,, where the sum ranges over all n-tuples of multi-
indices (ay, * - -, ap) With a,+ - - - + =«

2. Let E be a Banach space. We define a map e: E—I?E, for

any p=1, by e(x)= 2*1790@’", zeFE. Then easily we have
n!

Theorem 1. The mape: E—IPE is of class C*.

A map f: E—F of Banach spaces is called a polyrnomial map if
there is a continuous linear map ¢: I?E—F, for some p=1, such that
S=¢oe. By definition, a polynomial map is of class C~.

Let P(E, F) be the vector space of polynomial maps from E to F'.

Theorem 2. If E admits a basis, then the map e*: L(I?E, F)
—P(E, F) defined by e*(p)=¢p-e, for ¢ ¢ LU?E, F), ts an isomorphism
for any p, 1<p<oo.

n-1
Lemma. Z xq(1)®‘ . ‘®xa(n):,§(_1)k(z (xv’(l) + e +xa'(’n—-k))®n)’

a€Sm
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for x,, ---,x, € E, where S, is the n® symmetric group and ¢’ ranges
over all combinations of (n—k) elements of the set {1, - - ., n}.

This Lemma is easily checked by a simple calculation.

Proof of Theorem 2. By definition, e* is a homomorphism onto
P(E,F). Let{u,---,u,, ---}be a basis for E, then {u,, ..., = GZS] Uiy

Q-+ Uiy |6:<6LS - - - <4y} forms a basis for E¢". Let ¢ € L(IPE, F)
be a map such that ¢(e(x))=0 for any x e E. Then for each base u;

of K and for any real 1+0, we have 0=¢(e(d%,)) = Zz_r:gp(u‘?") so that
n!

—lll—go(e(lui)) =(u;) + A0(u;)=0, hence ¢(u,)= 1}—1'131 (—A0(u,))=0. Induc-

tively, we assume that ¢(u,, ... ;) =0 for any u,, ..., with k<n. Then,
by the above Lemma, for any w,, ..., € E®" and for any real 1+0,

n—1
0=n !(p(e(lkz_;(_l)k(zl uia’(l) + te +u’1la'(n_k)),)

=l"go(uih,,,,in)+2”“@(1@1,,,,,%),
hence @(u,,,....,)=lim (—490(w;, ... ;,))=0. This implies that ¢=0 so
2-0

that e* is an isomorphism. q.e.d.
Remark. The assumption that £ admits a basis can be removed.
We shall define a topology on P(E, F) such that e* is a homeo-
morphism, and call it the [*-topology of P(FE, F).

n

We can imbed E5 =@ E®* in I?E for each 1<p<co, and then let

k=1
E‘; be the supplementary subspace in I?E. A polynomial map f
=g@oe: E—F is said to be of degree n if ¢(x)=0 for xe K. The
vector space P,(E, F') of polynomial maps of degree » from E to F is a
subspace of P(¥, F). Wehave P,(E,F)cP,(E,F)if n<wm and P,(E, F)
is canonically isomorphic to L(E, F). For three Banach spaces E, F
and G, we have

Proposition 3. P,(F,G@) P (E,F)CP,.(E,& and L(F, G)-P(E, F)
CcPE,G).

It does not hold that P(¥, G)oL(E,F)C P(E, @), but if f:E—F is
a linear map with || f||<1 then we have P(F, G)o fC P(E, G).

3. In this section we shall freely use the methods and results of
Palais [3; Chap. IV, VIII, XII.

Let M be a (finite dimensional) compact C~ manifold without
boundary and with a fixed strictly positive smooth measure. For a
(finite dimensional) hermitian vector bundle & over M, we define a
Hilbert vector bundle 2§ over M by 12&= LeJMlﬁéw with the group RU(&)

where U(£) is the group of unitary transformations of £&. Thus the
structure of 12§ depends on the hermitian structure of £. The map
e,: &,—0&,, xe M, induces a C~ bundle map e: E—B2E.
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A bundle map f:§—y is a polynomial map if there is a bundle
homomorphism ¢:}§—y such that f=¢oe. Let Pol(&,7) be the
vector space of polynomial maps from & to 7, then by Theorem 2 we
have an isomorphism e*: Hom (12§, n)—Pol (&, 7).

Let C=(&) be the vector space of (global) C~ sections of the bundle
&. For two hermitian vector bundles & and 7 over M, L(&, 7)) is the
vector bundle of linear maps &,—7,, for each xeM, such that
C~L(§,p)=Hom (&, 7). Similarly P(§,7) is defined to be the vector
bundle such that C=P(§, n)=Pol (§,7). We have again a bundle iso-
morphism e*: L(B&, n)—P(&, 7).

A map f: C=(§)—C=(y) is said to be polynomial (in narrow sense)
if there is a linear map ¢: C*(2§)—C~(y) such that f=¢oé where
é:C=(&)—C>(I28) is the map induced by e: E—BE.

Let A(&, ) be a vector space of linear operators from & to 7, that
is, an element of A(§, %) is a linear map T:C=(§)—C~(), then we
define a vector space PA(&, ) of polynomial operators from & to 5 by
PA(E, p)={T: C=(§)=C(p)| T=90¢ for some T ec APE,n)}. In this
case the map é*: A(l2§, ) >PA(&, ) is only an epimorphism in general.

Let T*(M) be the cotangent bundle of M and 7"(M) be the bundle
T*(M) with the zero section removed. Let z:T'(M)—M be the pro-
jection and & be a vector bundle over M, then 7*(§) is a vector bundle
over T'(M) and Pol (z*&, n*y) consists of functions ¢ on T"(M) such
that o(v,x) is a polynomial map of &, into 5,. We define a vector
space P Smbl,(§,7) by PSmbl(&,n)={cePol(x*&,n*n)|a(ov, )
=p*d(v,x) if p>0}. Again we have an isomorphism e*: Smbl(;§, )
—P Smbl,(&, ).

In [3], several vector spaces of linear operators are defined for
hermitian vector bundles over M. These are OP,(&, ), Int,(§, ) and
Diff, (&, ») etc. For precise definitions and properties of these spaces
we refer to [3]. From these we can define corresponding spaces of
polynomial operators, that is, POP(&, ), P Int,(&, ») and P Diff (&, )
ete.

In [3; Chap. XIJ, it is proved that the sequence 0—OP,_,(&, )

—Int,(&, n)f—'é—Smblk(S , 7))—0 is exact for any hermitian vector bundles
&, n over M where ¢;: Int,(§, 7)) —Smbl,(£,») is the symbol map.
Although é* are only epimorphisms we have

Proposition 4. The sequence 0—POP,_,(&,n)—P Int,(&, )

(z'°—>P Smbl, (&, 7)—0 is exact for any hermitian vector bundles &, 7y
over M.

Since Smbl, (&, »)cP Smbl,(£,7), we call a polynomial opera-
tor T e PInt,(&,7) semilinear if &,(T) is contained in Smbl(&, ).
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A semilinear polynomial operator T e P Int,(§, %) is called k™ order
elliptic if &,(T)(v,x) maps &, isomorphically onto 7, for all (v,x)
e T'(M). It is proved in [3] that if a linear operator S e Int, (&, %) is
k™ order elliptic then there exists S’ € Int_,(y, §) which is — k' order
elliptic such that o¢_,(8)=0,(8)"', S'S—I1,¢0P_(§,&) and SS
—1,e OP_(n,n). Similarly we have

Proposition 5. If a semilinear polynomial operator T € P Int, (&, n)
is k™ order elliptic then there is a linear operator T € Int_,(n, §) which
is —k™ order elliptic such that o,(T)=6,(T)"' and T'T—I,
e POP_(§, &).

Now, analogously to Theorem 5 of [3; Chap. XI], we give a proof
to the (well-known) theorem of regularity of a solution of semilinear
elliptic polynomial equation.

Theorem 3. Let T be a semilinear elliptic polynomial operator
in PInty(€,7). If fe H (&) and TfeHr(p) then fe Hr*“(&), where
H*(&) is the Sobolev spaces on C=(£) and T:H =(&)—H =(y) is the
extension of T. (For a precise definition, see [3])

Proof. Since H=(&)=UH™&), fe H™&) for some m. By in-
duction, it suffices to prove that if m<r+k then fe H™*(§). By the
above Proposition, there is a linear operator 7" e Int_,(», §) which is
— Kk order elliptic such that T'T—I, e POP_/(&, £), so that (T'Tf—f)
e H™*(§). On the other hand, since Tfe H'(y), T'Tfe H**(&)
cH™*Y(£). Hence we have fe H™*'(§). qg.e.d.
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