No. 6]

121. Paracompactifications of M-spaces

By Kiiti Morita

Department of Mathematics, Tokyo University of Education and University of Pittsburgh

(Comm. by Kinjirô KUNUGI, M. J. A., June 12, 1970)

By a space we shall always mean a completely regular Hausdorff space unless otherwise specified.

1. Let X be a space with a uniformity Φ agreeing with the topology of X; that is, Φ is a family of open coverings of X satisfying conditions (a) to (c) below, where for coverings \mathfrak{U} and \mathfrak{B} of X we mean by $\mathfrak{U} < \mathfrak{B}$ that \mathfrak{B} is a refinement of \mathfrak{U} .

(a) If $\mathfrak{U}, \mathfrak{B} \in \Phi$, then there exists $\mathfrak{W} \in \Phi$ such that $\mathfrak{U} < \mathfrak{W}$ and $\mathfrak{B} < \mathfrak{W}$.

(b) If $\mathfrak{U} \in \Phi$, there is $\mathfrak{V} \in \Phi$ which is a star-refinement of \mathfrak{U} .

(c) $\{\operatorname{St}(x,\mathfrak{U}) | \mathfrak{U} \in \Phi\}$ is a basis of neighborhoods at each point x of X.

Let $\{\Phi_{\lambda} | \lambda \in A\}$ be the totality of those normal sequences which consist of open coverings of X contained in Φ . Let $\Phi_{\lambda} = \{\mathfrak{U}_{\lambda i} | i = 1, 2, \dots\}$, where $\mathfrak{U}_{\lambda i}$ is a star-refinement of $\mathfrak{U}_{\lambda,i-1}$ for $i=2,3,\dots$. As in [1], we denote by (X, Φ_{λ}) the topological space obtained from X by taking $\{\operatorname{St}(x, \mathfrak{U}_{\lambda i}) | i = 1, 2, \dots\}$ as a basis of neighborhoods at each point x of X. Let X/Φ_{λ} be the quotient space obtained from (X, Φ_{λ}) by defining those two points x and y equivalent for which $y \in \operatorname{St}(x, \mathfrak{U}_{\lambda i})$, for $i=1, 2, \dots$. Then there is a canonical map $\varphi_{\lambda} : X \to X/\Phi_{\lambda}$ which is continuous, and X/Φ_{λ} is metrizable.

Now we shall define a partial order in $\{\Phi_{\lambda} | \lambda \in \Lambda\}$. If each member of Φ_{λ} has a refinement in Φ_{μ} , we write $\Phi_{\lambda} < \Phi_{\mu}$. Then, if $\Phi_{\lambda} < \Phi_{\mu}$, there exists a continuous map $\varphi_{\lambda}^{\mu} : X/\Phi_{\mu} \rightarrow X/\Phi_{\lambda}$ such that $\varphi_{\lambda} = \varphi_{\lambda}^{\mu} \circ \varphi_{\mu}$, and $\{X/\Phi_{\lambda}; \varphi_{\lambda}^{\mu}\}$ is an inverse system of metrizable spaces. Let us set $\mu_{\Phi}(X) = \lim X/\Phi_{\lambda}$.

For any point x of X, let us put $\varphi(x) = \{\varphi_{\lambda}(x)\}$. Then $\varphi: X \to \mu_{\varphi}(X)$ is a homeomorphism into.

In case every Cauchy family $\{C_r\}$ of X with respect to Φ which has the countable intersection property is non-vanishing (that is, $\cap \overline{C}_r \neq \phi$), we say that X is *weakly complete* with respect to Φ .

Theorem 1. The map $\varphi: X \to \mu_{\phi}(X)$ is onto if and only if X is weakly complete with respect to Φ .

In case Φ is the finest uniformity (that is, Φ consists of all normal open coverings of X), we write $\mu(X)$ instead of $\mu_{\Phi}(X)$. In this case

we have the following theorems.

Theorem 2. $\mu(X)$ is the completion of X with respect to its finest uniformity and for any continuous map $f: X \rightarrow Y$ there is a continuous map $\mu(f): \mu(X) \rightarrow \mu(Y)$ so that μ is a covariant functor from the category of spaces to the category of topologically complete spaces.

Here a space is called *topologically complete* if it is complete with respect to its finest uniformity.

Theorem 3. $\mu(X)$ is characterized as a space Y with the following properties:

(a) Y is a topologically complete space containing X as a dense subspace.

(b) Any continuous map f from X into a metric space T can be extended to a continuous map from Y into T.

2. Now, let X be an M-space throughout this section (cf. [1]). Then, by definition, there is a normal sequence $\{\mathfrak{U}_i\}$ of open coverings of X satisfying the condition (M):

If $\{K_i\}$ is a decreasing sequence of non-empty closed sets of

(M) X such that $K_i \subset \text{St}(x, \mathfrak{U}_i)$ for each *i* and for some point x of X, then $\cap K_i \neq \phi$.

Let $\{\Phi_{\lambda} | \lambda \in \Lambda\}$ be the totality of all normal sequences of open coverings of X and $\{\Phi_{\lambda} | \lambda \in \Lambda'\}$ the set of all normal sequences Φ_{λ} satisfying Condition (M). Then $\{\Phi_{\lambda} | \lambda \in \Lambda'\}$ is cofinal in $\{\Phi_{\lambda} | \lambda \in \Lambda\}$ and we have $\mu(X) = \lim \{X/\Phi_{\lambda}; \lambda \in \Lambda'\}.$

Moreover $\varphi_{\lambda}^{\mu}: X/\Phi_{\mu} \rightarrow X/\Phi_{\lambda}$ is a perfect map if $\Phi_{\lambda} < \Phi_{\mu}$ and $\lambda, \mu \in \Lambda'$. In general, we have

Theorem 4. If $\{X_{\lambda}; \varphi_{\lambda}^{\mu}\}$ is an inverse system of spaces such that each φ_{λ}^{μ} is a perfect map, then the projection from $\lim_{\leftarrow} \{X_{\lambda}; \varphi_{\lambda}^{\mu}\}$ to X_{λ} is a perfect map for each λ .

Hence we have the first part of the following theorem.

Theorem 5. Let X be an M-space. Then $\mu(X)$ is a paracompact M-space, and moreover $\mu(X) = \beta(f)^{-1}(T)$ for any quasi-perfect map f from X onto a metric space T, where $\beta(f): \beta(X) \rightarrow \beta(T)$ is the Stone extension of f.

Thus we may call $\mu(X)$ the paracompactification of X.

Theorem 6. If $f: X \rightarrow Y$ is a quasi-perfect map, where X, Y are *M*-spaces, then $\mu(f): \mu(X) \rightarrow \mu(Y)$ is a perfect map.

Theorem 7. Let X be an M-space. Then X admits a quasiperfect map from X onto a separable (resp. locally compact or complete) metric space if and only if $\mu(X)$ is Lindelöf (resp. locally compact or a G_{δ} in its Stone-Cech compactification).

Theorem 8. Let f be a quasi-perfect map from an M-space onto an M-space Y. If X admits a quasi-perfect map from X onto a

512

separable (resp. locally compact or complete) metric space, so does Y.3. In this section we are concerned with the product formula

 $\mu(X \times Y) = \mu(X) \times \mu(Y)$, which, however, does not hold in general.

Theorem 9. For any space X and a locally compact, paracompact space Y we have $\mu(X \times Y) = \mu(X) \times \mu(Y)$.

Theorem 10. Let $X \times Y$ be an M-space. Then the following conditions are equivalent.

(a) $\mu(X \times Y) = \mu(X) \times \mu(Y)$.

(b) There exist quasi-perfect maps $\varphi: X \rightarrow S, \psi: Y \rightarrow T$ with S, T metrizable such that the product map $\varphi \times \psi: X \times Y \rightarrow S \times T$ is a quasi-perfect map.

(c) If K and L are any countably compact closed subsets of X and Y respectively, then $K \times L$ is countably compact.

4. As an application of Theorem 10 we have the following theorem, where, following M. Katětov (cf. [2]), we define dim X for a not necessarily normal space X by dim $\beta(X)$ ($\beta(X)$ being the Stone-Cěch compactification of X).

Theorem 11. Let X be an M-space and Y a metric space or a locally compact paracompact space. Then $\dim(X \times Y) \leq \dim X + \dim Y$.

It seems that Theorem 11 is the first result which assures the validity of the product theorem on dimension for the case of $X \times Y$ being not necessarily normal.

The proofs of the theorems stated above and the details will be published elsewhere.

References

- K. Morita: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [2] L. Gillman and M. Jerrison: Rings of Continuous Functions. Van Nostrand, Princetion (1960).