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1. The existence of measure preserving transformations which
are weakly but not strongly mixing has been discussed by Halmos [4],
Kakutani-von Neumann [5] and Chacon [1], [2], [3]. Maruyama [6]
has shown the existence of Gaussian flows of this type by some results
in Gaussian processes. In this short paper we shall give a general
method for constructing flows of the type, of which idea is obtained
from Chacon [2], [3].

2. Let (/2, _,/) be a Lebesgue space, where
is the product Lebesgue class and / is the usual product Lebesgue
measure defined on _L.

Definition 1. A flow (Tt} on (, _f’,/) is said to be ergodic if there
exists a positive number t such that ,a(TtA B)0 holds for every pair
A, B from _L with positive measure.

Definition 2. If there exist a complex number with the absolute
value one and a function f in L(/2) such that

f(Tt(x, y))--tf(x, y) for a.a. (x, y) e/2 and all t,
we call and f an eigenvalue and an eigenfunction corresponding to
respectively.

Definition 3. A low (Tt} is weakly mixing if the flow cannot
have simple eigenvalues other than one.

Definition 4. A flow (Tt} is strongly mixing if
lim ,u(TA B) (A),u(B)

holds for every pair A, B from with positive measure.
Definition 5. For a set A of A: with positive measure, a local flow

on A is defined as follows:

l(x, y + t) if (x, y + t) e A,
(ft(x, y)= tundefined elsewhere,

for each (x, y) A.
Our main result may be stated as ollows"
Theorem. There exists a weakly mixing flow {Tt} on (9,

which is not strongly mixing.

Proof. After the flow is constructed, we will prove that it is
weakly but not strongly mixing using a direct argument. The first step
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Of the construction is the following. We divide the two dimensional
torus 2 into three pairwise disjoint and consecutive rectangles
represented by Rll, R12 and Q1, where R=[O, 1/3) [0, 1), R1--[1/3, 2/3)

[0,1) and Q- [2/3,1) [0,1). Put R on R identifying the points
(0, 1) and (1/3, 1) with the points (1/3, 0) and (2/3, 0), respectively. We
define the local flow on the set R, where R--[0, 1/3) [0, 2). For
later convenience’ sake, we divide R into some squares, A-[O, 1/3)

[0, 1/3), ...,A-[0, 1/3)[5/3,2) and denote by the family {A,
.,A, Q}. Take

p(1)- 2 and a(1)- 6.
Next, we suppose that the n-lth step has been already constructed. In
an analogous method to the above, we divide R_ and Q_ into two
pairwise disjoint and consecutive rectangles R,R’Q, Q, respec-
tively. Put R on R and Q on R, and denote by R the set, that
is, R--[O, 1/3(1/2)n-) [0, p(n)), and take Q-Q. We define the local
flow (f on the set R. Furthermore, divide R into some pairwise
disjoint and consecutive squares, A,...,A and put -{A, .,
A,Q}. Here, the squares A,l<=k<__a(n), have the same area.
A simple calculation shows that for n>=2,

p(n) 2. p(n-- 1) + 1 and a(n)- 4. a(n-- 1) / 2n-. 6.
It is clear from the geometric interpretation that /- on the
domain of the definition of (?, and that lim exists almost every-
where. Indeed, this limit, lim, is the common extension of
for all n. Let

T-- lim

Obviously, the flow (T) is ergodic. Noticing that
--1/3(1/2)- holds for all n>=2, and putting T=-T1, it is easily verified
that

lim/(TnRI R)4=(/(R)}2- 1

This shows that the flow (Tt} is not strongly mixing.
In what follows we prepare the following lemmas which are

essential or our purpose.
Lemma 1. For any positive number e and for any Borel set B

with positive measure, there exist an integer n and a subset of (1, 2,
.., a(n)) such that

/g(BJAn)<e and /(BA)>=(1--e)/(An)
for k e a, where -{A,..., A(n), Q}.

Proof. This is easily obtained from the strong density theorem
of S. Saks (see Saks [7]).

Lemma 2. For any positive number e and for any Borel function
f, there exist an integer n and a subset of (1, 2, ..., a(n)) such that
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f is simple within e on I.={An,ke c}, where
that is, f is constant within on each A for k e

Proof. It ollows at once rom Lemma 1.
It remains to prove that {Tt} is weakly mixing. To this end, we

suppose that the flow {Tt} has an eigenfunction f such that
f(T(x, y))= 2f(x, y) or a.a. (x, y) e/2 and all t

Moreover, we may assume without loss of generality that Ifl>=K a.e.
for some positive number K. It ollows from Lemma 2 that or any
positive number , there exist an integer n and a subset a of (1, 2, ...,
a(n)) such that f is simple within on .={A, k e }. Now consider
such a set A for a k(l_<_ k<=p(n)--1) fixed in a. Then, by virtue of the
manner o the construction o (Tt}, one can easily verify that

1 and (Tp(n) --[2(Tp(n)An A)- -/2(A) +IA A)-- [2(An)

(T= T0. Let c() be the constant approximating f on A with an
error e

If(x, y) c() <= on E
where E is a subset o A such that /(E) >__ (1-- e)/(A). Then,
by Lemma 2, there exists a positive constant (f) which satisfies

If we let (x, y)e T()A A, then we have
f(T(n)(x, y))= 2(n)f(x, y).

If we let (x, y) T()+IAnAn, then we have
f(T’(n)+(x, y))--2()+f(x, y).

From the above relations, one obtains that
[()c(e)-- c(e) <_ 2e and

from which it follows that --1. This completes the proof.
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