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6, Construction o a Local Elementary Solution
or Linear Partial DiJerential Operators. I

By Takahiro KAWAI
Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kunihiko KODAIRA, M. $.A., Jan. 12, 1971)

Let P(x,D) be a partial differential operator with real analytic
coefficients. Assume that the principal part P of P is simple charac-
teristic and that P is of real coefficients. The purpose of this note
is to construct E(x,y) which satisfies P(x,D)E(x,y)=(x--y) near
(x0, x0, $0) as sections of the sheaf C, where $0 is a cotangent vector at
x0. (We refer the reader to Sato [7], [8] about the notion of the sheaf C
defined on the cotangential sphere (or co-sphere) bundle. See also
Kashiwara and Kawai [3]). In other words we construct a local co-
spherical elementary solution for P(x,D). We construct E(x, y) in
two different methods. The first one relies on the analysis in a complex
domain and the second on the theory of pseudo-differential operators of
finite type developed in Kashiwara and Kawai [3]. The extension of
our theory to the operators with complex coefficients will be given
in our forthcoming note. The details o2 this note will be published
elsewhere. (See also Kawai [5].)

1o We begin with the ollowing Theorem 1 essentially due to
Hamada [1], which treats the singular Cauchy problem in a complex
domain.

Let P(z,D) be a linear partial differential operator with holo-
morphic coefficients defined near the origin of C and have the form
P(z, D)-- =o a(z, D,)3/3z{, where a0(z, D)--- 1, z’= (z., ..., z) and
a(z, D,) is a differential operator o order at most (m--i).

Denote by P,(z, )the principal symbol of P(z,D) where $ is a
cotangent vector at z which stands for D. Assume urther that one of
the solutions $(z , ..., ) of P(z; , , ..., )=0 is holomorphic
in (z, ’) and that / (P(z; o, ., ..., ))4=0 near (z, ’)=(0, ),
where $’=(,..., ).

We denote by (z, $’;s, y’) the phase function with parameter
(s, y’)= (s, y, ..., y) corresponding to $0, that is, the characteristic
unction of P(z, D,) satisfying

( P(z, grad)-- 0
(ii) (s,z’, $’,s,y’)=(z’-y’, ’}
(iii) grad,],__= ((s, z’; $, ..., Sn), $, "", $).
Then we have
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Theorem 1. The following singular Cauchy problem (SC) has a
local solution u(z, ’; s,y’) which is multivalued analytic except on
K(’, s, y’)= {z (z, ’; s, y’) 0}.

IP(z, D)u(z, $’; s, y’)--0
(SC)

[P’(z, D)u(z, ’ s, y’) Iz- 1 / ((z’-- y’,
where

P’(z, D)= a(z, D,) z-
Here the existence domain of u can be taken independent of ($’, s, y’)

Since P_( grad)-(3/3$)P(z ;)I_-q=0 by the assumption,
we can construct u(z, $’;s, y’) in a cannonical way using the method
of asymptotic expansions just as in Hamada [1] (see also Kawai [4]
Theorem 2). We remark here that the above condition on P is weaker
than the usual assumption of simple characteristics, that is, the con-
dition on P is, so to speak, the assumption of directional simple charac-
teristics. We can also weaken the above condition to the assumption
of constant multiple characteristics in some cases, but we do not treat
the case in this note. (In that case the solution u(z, ’ s, y’) has essential
singularities and the logarithmic singularities on K($’, s, y’) in general.)

Now we return to the analysis in the real domain and obtain the
ollowing

Theorem 2. Let P(x, D) be a partial differential operator with
analytic coecients. Assume further that the principal part P(x,D)
of P(x,D) has real coecients and is simple characteristic. Then
we can find locally a hyperfunction E(x,y; ) which satisfies
P(x,D)E(x,y;)=l/((x--y,$}+iO) and depends real analytically
on y and .

Remark. The assumption that P has simple characteristics is
redundunt. It is clear rom the method of our proof that we need
only the assumption of directional simple characteristics near

Sketch of the proof. We can assume without the loss of gener-
alities that P(z, D) satisfies the conditions of Theorem 1 by the assump-
tion o simple characteristics. If =(1,0, ...,0), then P(xo, $):/=0
by the above assumption and it is already known that we can construct
E(x, y;$) with the required properties (Sato [6], see also Kashiwara
and Kawai [3]). Therefore we assume that $=($, ..., $) is not
parallel to (1, 0, ..., 0). So we can consider =/=0 without the loss of
generalities. To construct E(x, y; ) with the required properties, it
is sufficient to construct E(x, y;) when y=0 and =0 because real
coordinate transformation {v x-y (] :/: 2), v (x-y) / + (x-- y)}
reduces the problem to that case. For the sake o simplicity we use x
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instead of v even after the above transformation. By Theorem 1
there exists a function u(z, ’;s) which satisfies

D)u(z, ’; s)=O
P’(z, Dz)u(z, ’ s)Iz1=8-- 1 / (z’,

where s is a real number and Is I((1. Assuming Im (x, z’, $’ s)0

and x is real we define E(x, z’ ’) :U(Xl, z’, ’; s)ds By the defini-

tion of the operator P’(z,Dz) we conclude that P(x, z’, 3/3x, 3/z2,
.., 3/3z)E(Xl, z’ ’)= 1/(z’, $,}n. Since we have assumed that the

principal part of P has real coefficients, we can suppose the phase
function is a real valued function. Therefore the uniform analytic
function E(x, z’; ’) defines a hyperfunction E(x; ’) as its boundary
value from the domain {Im 0}. Thus we have obtained the required
E(x, y; ).

Remark 1o Taking a neighbourhood U o $0 in (n-1)-dimensional
sphere we define E(x, y) by
(n--l) S E(x, y, ) (--1)-$d/.. /d$_/d$//.../dn.
(-- 27i) e

Then the above method of the construction o E and the theory of in-
tegration on the shea C (see Sato [8]) show that the singular support
of E(x, y) is contained in the union of the sets o the type {(x, x, $, --$)}
U {(x, y, $, ]) (y, ]) belongs to the bicharacteristic strip o P(x, D)
issuing from (x, ) and x>yl} near (x0, x0, $0,--0). Thus Theorem 6
o Kawai [4] is the best possible one.

Remark 2. Since we want to treat the problem on the co-sphere
bundle, we have presented the theorem localizing the statement in
S-space. But, as we have assumed that the principal part o P has real
coefficients and is of simple characteristics, we can also construct
E(x, y) satisfying P(x,D)E(x, y)=(x--y) not localizing the statement
with respect to . In fact we consider in that case a singular Cauchy
problem in a complex domain giving the Cauchy data by (u(z,z’),
3 / 3zl u(z, z’), ..., -/3z-1 u(z, z’))[z1__8= (0, ..., 0, 1 / (z’-- y’, ’}n), in-
stead o (SC) in Theorem 1. Since the existence and the uniqueness o
the solution or the above Cauchy problem has been proved by Hamada
[1] (see also Kawai [4] Theorem 1), we can construct E(x, y) just in the
same way as above.

2. In this paragraph we give, as an application of our previous
note (Kashiwara and Kawai [3]), another method of constructing a
local elementary solution o a partial differential operator P(x,D)
with simple characteristics and real coefficients in its principal part,
ollowing the idea of HSrmander (HSrmander [2]; there he uses the
Fourier transform technique rather than the Radon transform tech-
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nique, which we employ in the sequel). The author expresses his
sincere thanks to Professor Grding, who kindly called the author’s
attention to HSrmander’s idea. Professor Kotake also kindly suggested
the author by correspondence that he should employ HSrmander’s idea.
We hope the use of the theory of the sheaf C and the assumption that
the coefficients of P are analytic have made the situation transparent.
We also remark that the singular support in the theory of hyper-
functions is defined modulo real analytic functions, not modulo C
functions.

Theorem 2’. Let P be as in Theorem 2. Then we can construct

locally F(x, y, ) such that P(x, D) F(x, y, $)w() defines a kernel
Ju

function of some elliptic pseudo-differential operator of finite type near
(Xo, o), where w()-- ,__ (--1)-$d$A... Ad$_I/d$// Ad
and U is a neighbourhood of o on the (n-1)-dimensional sphere.

See Kashiwara and Kawai [3] about the notion of (elliptic) pseudo-
differential operators of finite type.

Corollary. Since the elliptic pseudo-differential operator of finite
type is invertible (Kashiwara and Kawai [3] Theorem 6), there exists
E(x, y) such that P(x, D)E(x, y) (x-- y) near (Xo, Xo, o, o).

Sketch of the proof of Theorem 2’. We first choose a real phase
function (x, y, )which is positively homogeneous of degree 1 with
respect to satisfying (x,y, )=(x--y,
and P(x, grad(x, y, $))=_P,,(y, ). We want to find F(x, y, ) in the
form of of(x, y, )((x, y, $)+iO)/(P(y, $) +i0), where

(-- 1)(n--]-- I) I (] <n)
q(v) (--2r/-- 1 ) r-Vj-n log v-- I+-+... + v-(2/--1

(]_n)
and f(x, y, ) is real analytic in (x, y, $)($4=0) and positively homo-
geneous of degree (-]) with respect to $. Here the symbol + i0 means
the fact that F(x, y, ) is defined as the boundary value from the domain
{Ira (z, w, )0 and Im P(w, ))0} of some holomorphic ]:unc-

tion ,_of(z, w, )q((z, w, ))/P(w, ) in (z, w, ). That is, we
want to find some holomorphic function F(z,w,) such that
(.)P(z, 3/z)F(z, w, )= or(z, w, )q((z, w, )) holds with
to(Z, w, ):/:0 in a complex neighbourhood of (x0, x0, $0). Substituting

of(z, w, )O((z, w, ))(1/P(w, )) or F(z, w, ) we can determine
f(z,w, ) successively by solving the first order partial differential
equation =a 3f/z+bf=p, where
b=P_:(z, grad,)+..., p0--0 and p(]l) is determined by {f0, ",

f_:}. Since we have assumed that the operator P is of simple charac-
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teristics, we can find some non-characteristic surface S for the above
first order equation. Giving the Cuchy data on S to the above
equation by 1 for ]-0 and by 0 for ]>__1, we have the inequality
sup(,.,)e If(z, w, )1 <=C]! (]0) for some complex neighbourhood V
of (x0, x0, $0) and for some constant C. By this estimate the above
relation (.) holds as an equality for holomorphic functions in
{(z,w,)e VlIm(z,w,)>O, ImP,(w,)>O, and 1II/2C}. Since
the Cauchy data for f0=r0 is 1, r0 is not equal to zero in some complex
neighbourhood of (x0, x0, 0). Thus we have determind F(z, w, ) with
the properties required above. By the assumptions on the operator P
and the phase function it is easy to verify that F(z, w, )defines a
hyperfunction F(x, y, ) if we choose for which (grad P(x, grad (x,
y, )), Im 0 holds. We can also verify that Remark 1 of Theorem

2 holds for .IF(x, y, $)w($). It is obvious that P(x, D).[r(x, y, )w($)

defines an elliptic pseudo-differential operator of finite type with its
principal symbol equal to r0 (3(,..., n)/3($,’’’, $))- where ’s
are chosen so that they are real valued, positively homogeneous of
degree 1 with respect to $ and satisfy -_(x-y). (It is proved
by Sato in much more general situations that the ambiguity of the
choice of ’s has no effect after the integration). Therefore F(x, y, )
has all properties we wanted.

References

1 Hamada, Y.: The singularities of the solutions of the Cauchy problem.
Publ. R.I.M.S. Kyoto Univ. Ser. A, 5, 21-40 (1969).

2 Hbrmander, L.: On the singularity of solutions of partial differential
equations. Proc. Conf. on Functional Analysis and Related Topics, Univ.
of Tokyo Press, pp. 31-40 (1969).

3 Kashiwara, M., and T. Kawai: Pseudo-differential operators in the theory
of hyperfunctions. Proc. Japan Acad., 46(10), 1130-1134 (1970).

4 Kawai, T.: Construction of elementary solutions for/-hyperbolic operators
and solutions with small singularities. Proc. Japan Acad., 46, 912-916
(1970).

5 : On the local theory of (pseudo)-differential operators. Reports of
the Symposium on the Theory of Hyperfunctions, R.I.M.S. Kyoto Uni-
versity, pp.. 1-45 (1970) (in Japanese).

6 Sato, M.: Hyperfunctions and partial differential equations. Proc. Conf.
on Functional Analysis and Related Topics, Univ. of Tokyo Press,
pp. 91-94 (1969).

7 : Hyperfunctions and Partial Differential Equations. Proc. of Nice
Congress (1970).

[8] : On the structure of hyperfunctions. Sfigaku no Ayumi, 15, 9-72
(1970) (Notes by Kashiwara, in Japanese).


