4. A Note on Locally Uniform Rings and Modules

By Hidetoshi MARUBAYASHI

College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1971)

In [3] and [4], A. W. Goldie has investigated the structure of closed right ideals and annihilator right ideals of (semi)-prime right Goldie rings and has obtained interesting results. We generalize, in Section 1, Goldie's results on closed right ideals and annihilator right ideals of (semi)-prime right Goldie rings to those of right stable rings in the sense of [8]. In second section we shall give "density theorem" in basic uniform modules. Concerning the terminology we refer to [9].

1. On closed right ideals of right stable rings. Let M be a faithful right R-module. A submodule U is said to be uniform iff $U \neq 0$ and every pair of nonzero submodules of U has a nonzero intersection. A submodule K is said to be closed if it has no essential extensions in M. Clearly K is closed iff K is a complemented submodule in the sense of Goldie [4]. An R-module M is said to be locally uniform if every nonzero submodule of M contains a uniform submodule.

Proposition 1. Let M be a faithful locally uniform right R-module and let K be a closed submodule of M. Then K is an intersection of maximal closed submodules of M (cf. [4], Theorem 1.5).

Proof. Let K be a relative complement of a submodule L (cf. [4]). Then, there exists an independent set $\{A_i\}$ of uniform submodules such that $L \supset \Sigma_i \oplus A_i$. We set $N_i = K \oplus \Sigma_{j \neq i} \oplus A_j$ for each *i*, then $N_i \cap A_i = 0$. Choose a maximal closed submodule N_i^* such that $N_i^* \supseteq N_i$ and $N_i^* \cap A_i = 0$ for each *i*. If $(\bigcap_i N_i^*) \cap (\Sigma_i \oplus A_i) \neq 0$, then there exist $\{A_i\}_{i=1}^n$ such that $(N_1^* \cap \cdots \cap N_n^*) \cap (A_1 \oplus \cdots \oplus A_n) \neq 0$. On the other hand we have $(N_1^* \cap \cdots \cap N_n^*) \cap (A_1 \oplus \cdots \oplus A_n) = 0$, which is shown by repeated application of the modular law. Hence $(\bigcap_i N_i^*) \cap (\Sigma_i \oplus A_i) = 0$ and $K = \bigcap_i N_i^*$, as desired.

Following R. E. Johnson [8], R is said to be a right stable ring iff R is a right locally uniform ring with $Z_r(R)=0$ and $(\Sigma A)^r=0$, where A runs over all uniform right ideals. An element u of R is said to be uniform iff uR^1 is a uniform right ideal, where uR^1 is the principal right ideal generated by u (cf. [4]).

Proposition 2. If R is a right stable ring, then a right ideal M is a maximal right annihilator ideal if and only if $M = u^r$ for some uniform element u of R. In particular, u^r is maximally closed.

Proof. The "only if" part is immediate by Theorem 6.9 of [7].

Suppose that M is a maximal annihilator. Then there exists a uniform right ideal A such that $AM^{i} \neq 0$, because R is a right stable ring. For $0 \neq u \in A \cap M^{i}$, u^{r} is maximally closed (by Theorem 6.9 of [7]) and $u^{r} \supseteq M$. Hence we have $u^{r} = M$, as desired.

Proposition 3. Let R be a right stable ring and let \hat{R} be the maximal right quotient ring of R. If \hat{R} is a left quotient ring of R, then every right annihilator I of R is of the form $\bigcap_i (u_i)^r$, where u_i are uniform elements.

Proof. By Theorem 2.2 of [10], $L_r^*(R) = J_r^*(R)$. Hence the assertion follows immediately by Propositions 1 and 2.

Proposition 4. Let R be a finite dimensional right stable ring. Then every proper right annihilator I of R is of the form $u_1^r \cap \cdots \cap u_k^r$, where u_i are uniform elements.

Proof. Let K be a relative complement of I. Choose a uniform right ideal $A_1 \subseteq K$. If $I^i A_1 = 0$, then $I \supseteq A_1$. This is a contradiction. Hence $I^{i}A_{1} \neq 0$. There exists a uniform right ideal C_{1} such that $C_{1}I^{i}A_{1}$ $\neq 0$, because R is a right stable ring. Hence there exists an element u_1 of $I^{l} \cap C_1$ such that $u_1A_1 \neq 0$ and therefore $u_1^{r} \cap A_1 = 0$, $u_1^{r} \supseteq I$. If $u_1^{r} \cap K$ =0, then clearly $I=u_1^r$. Otherwise we choose a uniform right ideal A_2 in $u_1^r \cap K$. By the same argument as above, there exists a uniform element u_2 of R such that $u_2^r \cap A_2 = 0$ and $u_2^r \supseteq I$. Since $u_1^r \supseteq A_2$ and $u_2^r \cap A_2$ =0, we have $u_1^r \supseteq u_1^r \cap u_2^r$. If $u_1^r \cap u_2^r \cap K = 0$, then we obtain $I = u_1^r \cap u_2^r$. Otherwise we choose a uniform right ideal A_3 in $u_1^r \cap u_2^r \cap K$ and a uniform element u_3 of R such that $u_3^r \supseteq I$ and $u_3^r \cap A_3 = 0$. Clearly $u_1^r \cap u_2^r \supseteq u_1^r \cap u_2^r \cap u_3^r$. The process is continued until it terminates, which must occur after not more than $\dim_R R$ terms, because the chain $u_1^r \supseteq u_1^r \cap u_2^r \supseteq u_1^r \cap u_2^r \cap u_3^r \supseteq \cdots$ can not have more than dim_R R terms. Hence there is an integer k > 0 such that $(u_1^r \cap \cdots \cap u_k^r) \cap K = 0$ and $(u_1^r \cap \cdots \cap u_k^r) \supseteq I$. Hence we obtain $I = u_1^r \cap u_2^r \cap \cdots \cap u_k^r$.

2. Density Theorem in basic uniform R-modules. Throughout this section, the ring R will be a right and left locally uniform prime ring with $Z_r(R) = Z_l(R) = 0$. Let M be a right R-module. The set $Z_R(M) = \{m \in M \mid m^r \subset R\}$ is a submodule called the singular submodule of M, where $m^r = \{a \in R \mid ma = 0\}$. As in [5], an R-module M is said to be basic if

(i) $Z_R(M) = 0$, and

(ii) for each nonzero submodule N, there exists an R-monomorphism ϕ such that $\phi: M \rightarrow N$.

If M is a locally uniform basic R-module, then M is uniform and M is a prime module in the sense of [2].

The followings are examples of uniform basic *R*-modules.

(i) If R is a right and left locally uniform prime ring with $Z_r(R)$

12

 $=Z_{1}(R)=0$ and if M is a uniform right ideal of R, then M is a basic uniform prime R-module.

(ii) Let R be a semi-prime ring and let M be a torsion-less R-module in the sense of [11]. If M is a uniform R-module with $Z_R(M) = 0$, then M is a basic uniform R-module. In particular, if R is a prime ring, then M is a prime R-module.

Now, let M be a basic uniform R-module and let $K = \operatorname{Hom}_{R}(M, M)$. By Lemma 5.4 of [5], nonzero elements of K are non-singular mappings and hence M is a torsion-free left K-module. Since $Z_{R}(M)=0$, there exists a uniform right ideal U of R such that $MU\neq 0$. Hence $mU\neq 0$ for some $m \in M$. Then, by Theorem 2.4 of [2], we obtain $mU \cong U$. Let \hat{R} be the maximal right quotient ring of R. We set $\hat{U}=E_{R}(U)$ in \hat{R} , where $E_{R}(U)$ is an injective hull of U. Then \hat{U} is a minimal right ideal of \hat{R} and $\Delta = \operatorname{Hom}_{\hat{R}}(\hat{U}, \hat{U})$ is the right quotient division ring of Γ $= \operatorname{Hom}_{R}(U, U)$ by Theorem 1.2 of [1; p. 97]. Since $E_{R}(M) = E_{R}(mU)$ $\cong E_{R}(U) = \hat{U}$, we may assume that M is an R-submodule of \hat{U} . Since M is basic, there exists an R-monomorphism σ such that

$$\sigma: M \longrightarrow U$$

Clearly, there exists a uniform left ideal W such that $WU \neq 0$ and $UW \neq 0$. Then $D = W \cap U$ is a left and right Ore domain and we obtain the natural inclusions $D \subset \Gamma \subset K$ as abelian groups, where $D \rightarrow \Gamma$ is a left multiplication and $\phi: \Gamma \rightarrow K$ is defined by $\phi(\alpha) = \alpha \sigma$ for $\alpha \in \Gamma$.

Lemma 1. If x and y are nonzero elements of M, then $Kx \cap Ky \neq 0$ if and only if $x^r = y^r$.

Proof. Since $Z_{\mathbb{R}}(M) = 0$ and M is uniform, x^r is a maximal closed right ideal of R for every nonzero element x of M, by Theorem 6.9 of [7]. Hence the "if" part is clear. Conversely suppose that $x^r = y^r$. We set $x' = \sigma(x)$ and $y' = \sigma(y)$. Then $(x')^r = (y')^r$ and $(x')^{rl} = (y')^{rl}$ is a minimal annihilator left ideal of R. Hence $Wx' \cap Wy' \neq 0$ and $D(Wx' \cap Wy') \neq 0$, because R is a prime ring. There exist elements $d \in D$; $b, b_1 \in W$ such that $0 \neq dbx' = db_1y'$. Then clearly $db, db_1 \in D$ and therefore $0 \neq (db\sigma)x = dbx' = db_1y' = (db_1\sigma)y$ for $db\sigma, db_1\sigma \in K$.

As usual, the elements x_1, \dots, x_n of M are called K-linearly independent if and only if $k_1x_1 + \dots + k_nx_n = 0$ implies that all $k_i = 0$, $k_i \in K$.

The following lemma follows from the same arguments as in Lemma 3.1 of [6].

Lemma 2. The elements x_1, \dots, x_n of M are K-linearly independent if and only if $(x_j)^r \supseteq \bigcap_{i=1, i \neq j}^n (x_i)^r$, $j=1, \dots, n$.

Theorem 2 (Density theorem in basic uniform modules). If $[x_1, \dots, x_n]$ is any set of K-linearly independent elements of M and if $[y_1, \dots, y_n]$ is any set of n elements of M, then there exists an element a of

No. 1]

R and a nonzero element k of K such that

 $x_i a = k y_i, \quad i = 1, \dots, n.$

Proof. Let q be an element of \hat{R} and let $L_q = \{r \in R \mid qr \in U\}$. Then for each $x_i, L_{x_i} \subset R$ as a right R-module, because $M \supset U$ as a right Rmodule. We now set $I_i = \bigcap_{j=1, i\neq j}^n (x_j)^r$ and $I'_i = I_i \cap L_{x_i}$. Then $I_i \supset I'_i$ as a right R-module. Hence we obtain $x_i I'_i \neq 0$ and $x_i I'_j = 0$ $(i \neq j)$ by Lemma 2. Since $x_i I'_i$ is a right ideal of R, we have $(x_i I'_i)^r = 0$. Hence there exist elements $e_i \in D$ and $b_i \in I'_i$ such that $x_i b_i e_i y_i \neq 0$ for all $y'_i \neq 0$, where $y'_i = \sigma(y_i)$. We set $a_i = b_i e_i y'_i$ for all $y'_i \neq 0$ and $a_j = 0$ for all $y'_j = 0$. Then $x_i a_i = x_i b_i e_i y'_i = d_i y'_i$, where $d_i = x_i b_i e_i \in D$. Now, for all $y'_i \neq 0$, $d_i y'_i W \neq 0$ and hence $d_i y'_i W \neq 0$ for some $w_i \in W$, $d_i y'_i w_i \in UW \subseteq U \cap W$ = D. Since D is a right Ore domain, $d_i y'_i w_i D$ is a nonzero right ideal of D for each $y'_i \neq 0$ and $\bigcap_i d_i y_i w_i D \neq 0$. Select an element d such that $d \in d_i y'_i w_i D$, $d \neq 0$ and $d = d_i y'_i w_i c_i$ for each $y'_i \neq 0$. Then, putting a $= a_1 w_1 c_1 y'_1 + \cdots + a_n w_n c_n y'_n$, we obtain $x_i a = dy'_i = (d\sigma) y_i$, for $d\sigma \in K$, as desired.

References

- C. Faith: Lectures on Injective Modules and Quotient Rings. Springer-Verlag, New York (1967).
- [2] E. H. Feller and E. W. Swokowski: Prime modules. Can. J. Math., 17, 1041-1052 (1965).
- [3] A. W. Goldie: The structure of prime rings under ascending chain conditions. Proc. London Math., 8, 589-608 (1958).
- [4] —: Semi-prime rings with maximum condition. Proc. London Math. Soc., 10, 201-220 (1960).
- [5] ----: Torsion-free modules and rings. J. Algebra, 1, 268-287 (1964).
- [6] R. E. Johnson: Representations of prime rings. Trans. Amer. Math. Soc., 74, 351-357 (1953).
- [7] —: Structure theory of faithful rings. II. Trans. Amer. Math. Soc., 84, 523-544 (1957).
- [8] ——: Rings with zero right and left singular ideals. Trans. Amer. Math. Soc., 118, 150–157 (1965).
- [9] H. Marubayashi: On potent rings. I, II. Proc. Japan Acad., 46, 893-896, 897-900 (1970).
- [10] Y. Utumi: On rings of which any one-sided quotient rings are two-sided. Proc. Amer. Math. Soc., 14, 141-147 (1963).
- [11] J. M. Zelmanowitz: Endomorphism rings of torsionless modules. J. Algebra, 5, 325-341 (1967).