34. Construction of a Local Elementary Solution for Linear Partial Differential Operators. II

By Takahiro Kawai
Research Institute for Mathematical Sciences, Kyoto University
(Comm. by Kunihiko Kodaira, m. J. A., Feb. 12, 1971)

Let $P\left(x, D_{x}\right)$ be a linear partial differential operator with real analytic coefficients defined on a domain containing the origin in \boldsymbol{R}^{n}. We denote its principal symbol by $P_{m}(x, \xi)$. Assume that $P\left(x, D_{x}\right)$ has simple characteristics, that is, $\operatorname{grad}_{\xi} P_{m}(x, \xi) \neq 0$ whenever $P_{m}(x, \xi)=0$.

In this note we first construct a local elementary solution for P under the condition (P), which is concerned with the behaviour of the characteristic surfaces. Secondly we prove that the condition (P) follows from the condition $(\mathrm{NT})_{f}$, which is deeply related with the work of Nirenberg and Treves [6], [7]. The condition (NT) ${ }_{f}$ does not cover all the possibilities of the solvable partial differential operators in the theory of hyperfunctions. Thus our result is weaker than that of Nirenberg and Treves [7] concerning distribution solutions. Our analysis is different from theirs in the point that we treat the problem in the framework of hyperfunctions or rather in that of Sato's sheaf \mathcal{C} defined on the cotangential sphere bundle (or co-sphere bundle in short). For the notion of the sheaf \mathcal{C} we refer the reader to Sato [8], [9]. We hope, however, our method of construction of an elementary solution given in Theorem 2 reveals the geometrical meaning of condition (NT) ${ }_{f}$.

In Theorem 4 and Theorem 5 we also treat two cases which are not covered by condition $(\mathrm{NT})_{f}$. We remark that the three features, which appear in Theorems 2, 4 and 5 respectively, are typical ones about the behaviour of the characteristic surfaces.

We have constructed a local elementary solution $E(x, y)$ for a linear partial differential operator P with simple characteristics and with real coefficients in its principal symbol and investigated its singularities in our previous note [4], so that in the sequel we consider the case where the principal symbol $P_{m}(x, \xi)$ of P has the form $A_{m}(x, \xi)+i B_{m}(x, \xi)$ where A_{m} and B_{m} are real and $B_{m} \not \equiv 0$. We can assume that $\operatorname{grad}_{\xi} A_{m}$ $\neq 0$ when $P_{m}=0$ without the loss of generalities. The details of this note will be published elsewhere. (See also Kawai [5].)

Our method of construction of an elementary solution for P is just the same as that employed in our previous note [4]. We first repeat the fundamental theorem essentially due to Hamada [1] in a form which is suitable for the present situations.

Let $P\left(z, D_{z}\right)$ be a linear partial differential operator with holomorphic coefficients defined near the origin of C^{n}. Assume that $P\left(z, D_{z}\right)$ has the form $\sum_{j=0}^{m} a_{j}\left(z, D_{z^{\prime}}\right) \partial^{j-1} / \partial z_{1}^{j-1}$ where z^{\prime} denotes $\left(z_{2}, \cdots, z_{n}\right)$, that the order of $a_{j}\left(z, D_{z^{\prime}}\right)$ is equal to or smaller than $m-j$ and that $\alpha_{m}\left(z, D_{z^{\prime}}\right)$ $\equiv 1$. Assume further that $\partial / \partial \xi_{1} P_{m}(z, \xi) \neq 0$ near $(z, \xi)=\left(0, \xi^{0}\right)$ where $P_{m}\left(0, \xi^{0}\right)=0$. Then we have the following Theorem 1. In this theorem we denote by $\chi(z, w, \xi)$ a holomorphic function in (z, w, ξ) near $\left(0,0, \xi^{0}\right)$, positively homogeneous of degree 1 with respect to ξ and has the form $\langle z-w, \xi\rangle+O\left(|z-w|^{2}|\xi|\right)$. This function χ is specified later in the course of the construction of elementary solution to expand $\delta(x-y)$ using curvilinear waves. (The expansion of δ-function by complex-valued curvilinear waves is due to Sato.)

Theorem 1. Consider the following singular Cauchy problem: $\left\{P\left(z, D_{z}\right) E(z, w, \xi, s)=0\right.$ $\left\{\left.P^{\prime}\left(z, D_{z}, D_{s}\right) E(z, w, \xi, s)\right|_{z_{1}=s}=J(z, w, \xi) / \chi(z, w, \xi)^{n}\right.$, where $J(z, w, \xi)$ is a holomorphic function in (z, w, ξ) and $P^{\prime}\left(z, D_{z}, D_{s}\right)$ is defined by giving its symbol as $P\left(z, \sigma+\xi_{1}, \xi^{\prime}\right)-P(z, \xi) / \sigma$, where σ stands for D_{s}. Then we have a solution $E(z, w, \xi, s)$, which is represented in the form $\sum_{j=m-n-1}^{-1} e_{j}(z, w, \xi, s) \varphi^{j}(z, w, \xi, s)+e_{0}(z, w, \xi, s) \log \varphi(z, w, \xi, s)+e_{1}(z, w, \xi, s)$, where e_{j} 's are holomophic functions and $\varphi(z, w, \xi, s)$ satisfies the characteristic equation $P_{m}\left(z, \operatorname{grad}_{z} \varphi(z, w, \xi, s)\right)=0$ with the initial data $\chi(z, w, \xi)$ on $\left\{z_{1}=s\right\}$.

Erratum. In our previous note [4], the operator $P^{\prime}\left(z, D_{z}\right)$ defined in Theorem 1 should be replaced by the above $P^{\prime}\left(z, D_{z}, D_{s}\right)$.

We next give the definition of condition (P$)_{(0, \xi)}$. In the sequel we drop the subscript $\left(0, \xi^{0}\right)$ for convenience.

Condition (P) : Choosing a suitable initial condition $\chi(z, w, \xi)$ which is positively homogeneous of degree 1 with respect to ξ and for which $\operatorname{Im} \chi(x, y, \xi) \geqq 0$ holds on $\{(x, y, \xi)$ real and $\operatorname{Re} \chi(x, y, \xi)=0\}$, we have $\operatorname{Im} \varphi(x, y, \xi, s) \geqq 0$ on $\left\{(x, y, \xi, s)\right.$ real, $x_{1} \geqq s, \xi \in I^{+}$and $\operatorname{Re} \varphi(x, y, \xi, s)$ $=0\}$ and $\left\{(x, y, \xi, s)\right.$ real, $x_{1} \leqq s, \xi \in I^{-}$and $\left.\operatorname{Re} \varphi(x, y, \xi, s)=0\right\}$ where I^{+} and I^{-}are locally closed set in an ($n-1$)-dimensional co-sphere S^{n-1} and their union $I=I^{+} \cup I^{-}$is a neighbourhood of ξ^{0} in S^{n-1}.

Remark 1. When the space dimension n is larger than 2 the suitable choice of $\chi(z, w, \xi)$ is important since we cannot solve the Hamilton-Jacobi equations in a real domain in general to obtain $\varphi(x, y, \xi, s)$ for an operator with complex coefficients.

Remark 2. In general, a real analytic function $f(x)$ is said, after Sato, to be of positive type if $\operatorname{Im} f(x) \geqq 0$ holds when $\operatorname{Re} f(x)=0$. Analogous to this terminology condition (P) may be said as follows: the phase function φ can be chosen to be of half positive type for a suitable choice of the initial condition χ which is of positive type. The notion
of the half positive type is the key to the solvability. Compare the fact that the singularity of a good elementary solution for a operator P with real principal symbol is contained in "half of the bicharacteristic strips". (See Kawai [4] about the precise statement.)

Theorem 2. Assume that P satisfies condition (P). Then we can construct $E(x, y)$ for which $P\left(x, D_{x}\right) E(x, y)=\delta(x-y)$ holds near $\left(0,0, \xi^{0}\right.$, $\left.-\xi^{0}\right)$ as the section of the sheaf \mathcal{C}.

Sketch of the proof. We first choose $\chi_{j}(x, y, \xi)$ so that they satisfy $\chi(x, y, \xi)=\sum_{j=1}^{n}\left(x_{j}-y_{j}\right) \chi_{j}(x, y, \xi)$ and are positively homogeneous of degree 1 with respect to ξ. Then we define $J(x, y, \xi)$ by $\frac{\partial\left(\chi_{1}, \cdots, \chi_{n}\right)}{\partial\left(\xi_{1}, \cdots, \xi_{n}\right)}$ and apply Theorem 1. Finally we define $E(x, y)$ as the boundary value of $\int_{I^{+}} \omega(\xi) \int_{\alpha}^{x_{1}} E\left(x_{1}, z^{\prime}, y, \xi, s\right) d s-\int_{I_{-}} \omega(\xi) \int_{x_{1}}^{\beta} E\left(x_{1}, z^{\prime}, y, \xi, s\right) d s$ from the domain $\{\operatorname{Im} \varphi>0\}$, where $\omega(\xi)$ is the volume element $\sum_{j=1}^{n}(-1)^{j-1} \xi_{j} d \xi_{1}$ $\wedge \cdots \wedge d \xi_{j-1} \wedge d \xi_{j+1} \wedge \cdots \wedge d \xi_{n}$ and α and β are some constants. The above integral is well-defined by condition (P). It is obvious from the initial condition for $E(z, w, \xi, s)$ given in Theorem 1 that $P\left(x, D_{x}\right) E(x, y)$ $=\int_{I} \frac{J(x, y, \xi)}{(\chi(x, y, \xi)+i 0)^{n}} \omega(\xi)$ holds. By Sato's formula for the curvilinear wave decomposition of δ-function we have $\int \frac{J(x, y, \xi)}{(\chi(x, y, \xi)+i 0)^{n}} \omega(\xi)$ $=\frac{(-2 \pi i)^{n}}{(n-1)!} \delta(x-y)$ since χ is of positive type. Thus we have obtained the required $E(x, y)$.

We next investigate the relation between condition (P) and condition (NT) $)_{f}$, which is related to the operator P itself more directly than (P). We denote by $\Gamma_{\left(x_{0}, \xi\right)}$ the bicharacteristic strip of $A_{m}(x, \xi)$ inssuing from (x_{0}, ξ^{0}) which satisfies $P_{m}\left(x_{0}, \xi^{0}\right)=0$.

Condition (NT$)_{f}: B_{m}(x, \xi)$ has a zero of finite even order at ($x_{0}^{\prime}, \xi^{0 \prime}$) along $\Gamma_{\left(x_{0}^{\prime}, \xi^{\circ}\right)}$ for $\left|x_{0}-x_{0}^{\prime}\right| \ll 1$ and $\left|\xi^{0}-\xi^{0}\right| \ll 1$. (Cf. Nirenberg and Treves [7] p. 460. Their condition (\mathcal{P}) admits $B_{m} \equiv 0$ on some $\left.\Gamma_{\left(x_{0}^{\prime}, 0^{\prime}\right) .}\right)$

Theorem 3. Condition $(\mathrm{NT})_{f}$ implies condition (P).
Sketch of the proof. It is sufficient to find a suitable initial condition χ so that the phase function φ becomes of half positive type for some suitable choice of local co-ordinate system. Since we have assumed that P has simple characteristics, $P_{m}(x, \xi)$ can be decomposed into the form $Q(x, \xi)\left(\xi_{1}-a\left(x, \xi^{\prime}\right)-i b\left(x, \xi^{\prime}\right)\right)$ near $(x, \xi)=\left(0, \xi^{0}\right)$, where $Q(x, \xi)$ never vanishes near $\left(0, \xi^{0}\right)$ and is positively homogeneous of degree $m-1$ with respect to ξ and $a\left(x, \xi^{\prime}\right)$ and $b\left(x, \xi^{\prime}\right)$ are real valued and positively by homogeneous of degree 1 with respect to $\xi^{\prime}=\left(\xi_{2}, \cdots, \xi_{n}\right)$. Using the invariance property of $(\mathrm{NT})_{f}$ by multiplication of nonvanishing factor due to Nirenberg and Treves [6] § 2, we can assume
that $\xi_{1}-a\left(x, \xi^{\prime}\right)-i b\left(x, \xi^{\prime}\right)$ satisfies condition $(\mathrm{NT})_{f}$. Thus it is sufficient to investigate the properties of φ which satisfies $\partial \varphi / \partial x_{1}$ $-a\left(x, \operatorname{grad}_{x^{\prime}} \varphi\right)-i b\left(x, \operatorname{grad}_{x^{\prime}} \varphi\right)=0$. We have a unique holomorphic solution of the above first order partial differential equation when the initial condition for φ is given on some non-characteristic surface by the integration of the Hamilton-Jacobi equations in a complex domain since we have assumed that the coefficients of $P\left(x, D_{x}\right)$ are real analytic. So we estimate $\operatorname{Im} \varphi$ using the asymptotic expansion of φ. After the usual real coordinate transformation from (x) to (y) which straightens the bicharacteristic strip through (x_{0}, ξ^{0}), that is, the bicharacteristic strip of $\eta_{1}-\widetilde{a}\left(y, \eta^{\prime}\right)$ is parallel to the y_{1}-axis, where $\eta_{1}-\widetilde{a}\left(y, \eta^{\prime}\right)$ is the expression of $\xi_{1}-a\left(x, \xi^{\prime}\right)$ after the above coordinate transformation. See Nirenberg and Treves [6] p. 21 as for the coordinate transformation. For the sake of simplicity we write (x, ξ) instead of (y, η) after the coordinate transformation and use the letter y to denote a parameter as in Theorem 2. It is obvious from our assumption that we have for some neighbourhood V of the origin in $\boldsymbol{R}^{n} b(x, \xi) \geqq 0$ in V, or $b(x, \xi) \leqq 0$ in V. So we assume that $b(x, \xi) \geqq 0$ in V. Assuming that $\varphi(x, y, \xi, s)$ has the form $\left(s-y_{1}\right) \xi_{1}+\left\langle x^{\prime}-y^{\prime}, \xi^{\prime}\right\rangle+i\left|x^{\prime}-y^{\prime}\right|^{2}+\sum_{k=0}^{\infty} \varphi_{k}(x, y, \xi, s)$, where y, ξ and s play the role of parameters, $\varphi_{k}(x, y, \xi, s)$ are polynomials in ($x^{\prime}-y^{\prime}$) of order k and $\varphi_{k}\left(s, x^{\prime}, y, \xi, s\right)=0$ for every k. Then φ_{k} 's are determined successively by solving ordinary differential equations and it is not difficult to estimate $\operatorname{Im} \varphi$ for $x_{1} \geqq s$. (Cf. Nirenberg and Treves [6] pp. 22-25). Thus we conclude that condition (P) follows from (NT) ${ }_{f}$.

Remark. In the above argument we have proved more than (P) because $\operatorname{Im} \varphi>0$ if $x_{1}>s$ (or $x_{1}<s$). Hence we hope condition (P) will be satisfied even when $B_{m}(x, \xi)$ vanishes identically on some bicharacteristic strip of $A_{m}(x, \xi)$, but we have not yet proved this fact.

As is clear from the above remark the case which condition (NT) f_{f} covers is one extreme case where P has a local elementary solution. There are two other extreme cases which are easily treated by the theory of pseudo-differential operators of finite type developed in Kashiwara and Kawai [3]. Since the method is just the same as that indicated in the last part of our previous note [4] and its idea is due to Hörmander [2], we do not repeat its procedure in this note but indicate where the changes are needed. Until the end of this note we assume that the vectors $\operatorname{grad}_{\xi} A_{m}(x, \xi)$ and $\operatorname{grad}_{\xi} B_{m}(x, \xi)$ are linearly independent whenever $P_{m}(x, \xi)=0$. In some cases we may use the assumption of the linear independence of $\operatorname{grad}_{(x, \xi)} A_{m}$ and $\operatorname{grad}_{(x, \xi)} B_{m}$ on $\left\{P_{m}(x, \xi)\right.$ $=0\}$, but under this weaker assumption we must be more careful in technicalities. Therefore we adopt the above stronger condition of linear independence in this note.

Theorem 4. Assume that there exists a phase function $\varphi(x, y, \xi)$ satisfying the following conditions (i)~(iv) near $(x, y, \xi)=\left(0,0, \xi^{0}\right)$. Then we can construct $E(x, y)$ which satisfies $P\left(x, D_{x}\right) E(x, y)=\delta(x-y)$ near $\left(0,0, \xi^{0},-\xi^{0}\right)$ as sections of the sheaf \mathcal{C}.
(i) $P_{m}\left(x, \operatorname{grad}_{x} \varphi(x, y, \xi)\right)=P_{m}(y, \xi)$
(ii) $\varphi(x, y, \xi)=\langle x-y, \xi\rangle+O\left(|x-y|^{2}|\xi|\right)$
(iii) $\varphi(x, y, \xi)$ is real analytic near $\left(0,0, \xi^{0}\right)$ and positively homogeneous of degree 1 with respect to ξ.
(iv) $\varphi(x, y, \xi)$ is of positive type.

The method of the construction of $E(x, y)$ given in our previous note [4] Theorem 2^{\prime} runs in this case without any essential changes. Remark that $1 / P_{m}(y, \xi)$ is well-defined using the theory of substitutions in the sheaf \mathcal{C} (Sato [9]) since we have assumed $\operatorname{grad}_{\xi} A_{m}$ and $\operatorname{grad}_{\xi} B_{m}$ are linearly independent when $P_{m}(x, \xi)=0$.

Remark. The local elementary solution $E(x, y)$ constructed above plays an essential role to characterize the structure of the sheaf $\operatorname{Coker}_{C} P^{*}$ using another pseudo-differential operator. The details will be given in our next note.

We denote by $\overline{P_{m}}(x, \xi)$ the form with complex conjugate coefficients of $P_{m}(x, \xi)$, that is, $\overline{P_{m}}(x, \xi)=\sum_{|\alpha|=m} \overline{a_{\alpha}(x)} \xi^{\alpha}$ if $P_{m}(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha}$.

Theorem 5. Assume that the commutator of $P_{m}\left(x, D_{x}\right)$ and $\overline{P_{m}}\left(x, D_{x}\right)$ vanishes identically. Then we can construct a local elementary solution near $\left(0,0, \xi^{0},-\xi^{0}\right)$ for any ξ^{0}.

In this case we can integrate the Hamilton-Jacobi equations in a real domain and obtain real valued $\varphi(x, y, \xi)$ satisfying $P_{m}\left(x, \operatorname{grad}_{x} \varphi\right)$ $=P_{m}(y, \xi)$ near $\left(0,0, \xi^{0}\right)$ and positively homogeneous of degree 1 with respect to ξ. Thus the proof is just the same as in our previous note [4] Theorem 2^{\prime}.

Remark. If $P_{m}\left(x, y, D_{x}, D_{y}\right)$ has the form $Q_{m}\left(x+i y, D_{x}-i D_{y}\right)$ for some $Q_{m}(z, \zeta)$, then the condition of Theorem 5 is trivially satisfied. Therefore such an operator is very close to an operator with real principal symbol from the viewpoint of the behaviour of the characteristic surfaces. Such a class of operators appeared in a discussion with Sato and Kashiwara.

References

[1] Hamada, Y.: The singularities of the solutions of the Cauchy problem. Publ. R.I.M.S. Kyoto Univ. Ser. A, 5, 21-40 (1969).
[2] Hörmander, L.: On the singularity of solutions of partial differential equations. Proc. Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press, pp. 31-40 (1969).
[3] Kashiwara, M., and T. Kawai: Pseudo-differential operators in the theory of hyperfunctions. Proc. Japan Acad., 46, 1130-1134 (1970).
[4] Kawai, T.: Construction of a local elementary solution for linear partial differential operators. I. Proc. Japan Acad., 47, 19-23 (1971).
[5] -: On the local theory of (pseudo)-differential operators. Reports of the Symposium on the Theory of Hyperfunctions. R.I. M. S. Kyoto University, pp. 1-45 (1970) (in Japanese).
[6] Nirenberg, L., and F. Treves: On local solvability of linear partial differential equations, Part I. Comm. Pure Appl. Math., 23, 1-38 (1970).
[7] -: On local solvability of linear partial differential equations, Part II. Ibid., 23, 459-510 (1970).
[8] Sato, M.: Hyperfunctions and partial differential equations. Proc. Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press, pp.9194 (1969).
[9] -: On the structure of hyperfunctions. Sûgaku no Ayumi, 15, 9-72 (1970) (Notes by Kashiwara, in Japanese).

