34. Construction of a Local Elementary Solution for Linear Partial Differential Operators. II

By Takahiro KAWAI

Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kunihiko KODAIRA, M. J. A., Feb. 12, 1971)

Let $P(x, D_x)$ be a linear partial differential operator with real analytic coefficients defined on a domain containing the origin in \mathbb{R}^n . We denote its principal symbol by $P_m(x, \hat{\xi})$. Assume that $P(x, D_x)$ has simple characteristics, that is, $\operatorname{grad}_{\xi} P_m(x, \hat{\xi}) \neq 0$ whenever $P_m(x, \hat{\xi}) = 0$.

In this note we first construct a local elementary solution for P under the condition (P), which is concerned with the behaviour of the characteristic surfaces. Secondly we prove that the condition (P) follows from the condition $(NT)_f$, which is deeply related with the work of Nirenberg and Treves [6], [7]. The condition $(NT)_f$ does not cover all the possibilities of the solvable partial differential operators in the theory of hyperfunctions. Thus our result is weaker than that of Nirenberg and Treves [7] concerning distribution solutions. Our analysis is different from theirs in the point that we treat the problem in the framework of hyperfunctions or rather in that of Sato's sheaf C defined on the cotangential sphere bundle (or co-sphere bundle in short). For the notion of the sheaf C we refer the reader to Sato [8], [9]. We hope, however, our method of construction of an elementary solution given in Theorem 2 reveals the geometrical meaning of condition $(NT)_f$.

In Theorem 4 and Theorem 5 we also treat two cases which are not covered by condition $(NT)_f$. We remark that the three features, which appear in Theorems 2, 4 and 5 respectively, are typical ones about the behaviour of the characteristic surfaces.

We have constructed a local elementary solution E(x, y) for a linear partial differential operator P with simple characteristics and with real coefficients in its principal symbol and investigated its singularities in our previous note [4], so that in the sequel we consider the case where the principal symbol $P_m(x, \hat{\xi})$ of P has the form $A_m(x, \hat{\xi}) + iB_m(x, \hat{\xi})$ where A_m and B_m are real and $B_m \neq 0$. We can assume that $\operatorname{grad}_{\xi} A_m \neq 0$ when $P_m = 0$ without the loss of generalities. The details of this note will be published elsewhere. (See also Kawai [5].)

Our method of construction of an elementary solution for P is just the same as that employed in our previous note [4]. We first repeat the fundamental theorem essentially due to Hamada [1] in a form which is suitable for the present situations.

T. KAWAI

Let $P(z, D_z)$ be a linear partial differential operator with holomorphic coefficients defined near the origin of C^n . Assume that $P(z, D_z)$ has the form $\sum_{j=0}^{m} a_j(z, D_{z'})\partial^{j-1}/\partial z_1^{j-1}$ where z' denotes (z_2, \dots, z_n) , that the order of $a_j(z, D_{z'})$ is equal to or smaller than m-j and that $a_m(z, D_{z'}) \equiv 1$. Assume further that $\partial/\partial \xi_1 P_m(z, \xi) \neq 0$ near $(z, \xi) = (0, \xi^0)$ where $P_m(0, \xi^0) = 0$. Then we have the following Theorem 1. In this theorem we denote by $\chi(z, w, \xi)$ a holomorphic function in (z, w, ξ) near $(0, 0, \xi^0)$, positively homogeneous of degree 1 with respect to ξ and has the form $\langle z-w, \xi \rangle + O(|z-w|^2 |\xi|)$. This function χ is specified later in the course of the construction of elementary solution to expand $\delta(x-y)$ using curvilinear waves. (The expansion of ∂ -function by complex-valued curvilinear waves is due to Sato.)

Theorem 1. Consider the following singular Cauchy problem: $[P(z, D_z)E(z, w, \xi, s)=0$

$$\begin{split} & |P'(z,D_z,D_s)E(z,w,\xi,s)|_{z_1=s}=J(z,w,\xi)/\chi(z,w,\xi)^n, \ where \ J(z,w,\xi) \ is a holomorphic function in (z,w,\xi) \ and \ P'(z,D_z,D_s) \ is \ defined \ by \ giving its \ symbol \ as \ P(z,\sigma+\xi_1,\xi')-P(z,\xi)/\sigma, \ where \ \sigma \ stands \ for \ D_s. \ Then we have a solution \ E(z,w,\xi,s), \ which \ is \ represented \ in \ the \ form \\ & \sum_{j=m-n-1}^{-1} e_j(z,w,\xi,s)\varphi^j(z,w,\xi,s)+e_0(z,w,\xi,s)\log\varphi(z,w,\xi,s)+e_1(z,w,\xi,s), \ where \ e_j's \ are \ holomophic \ functions \ and \ \varphi(z,w,\xi,s) \ satisfies \ the \ characteristic \ equation \ P_m(z, \mathbf{grad}_z \ \varphi(z,w,\xi,s))=0 \ with \ the \ initial \ data \ \chi(z,w,\xi) \ on \ \{z_1=s\}. \end{split}$$

Erratum. In our previous note [4], the operator $P'(z, D_z)$ defined in Theorem 1 should be replaced by the above $P'(z, D_z, D_s)$.

We next give the definition of condition $(P)_{(0,\xi^0)}$. In the sequel we drop the subscript $(0,\xi^0)$ for convenience.

Condition (P): Choosing a suitable initial condition $\chi(z, w, \xi)$ which is positively homogeneous of degree 1 with respect to ξ and for which $\operatorname{Im} \chi(x, y, \xi) \geq 0$ holds on $\{(x, y, \xi) \text{ real and } \operatorname{Re} \chi(x, y, \xi) = 0\}$, we have $\operatorname{Im} \varphi(x, y, \xi, s) \geq 0$ on $\{(x, y, \xi, s) \text{ real}, x_1 \geq s, \xi \in I^+ \text{ and } \operatorname{Re} \varphi(x, y, \xi, s) = 0\}$ and $\{(x, y, \xi, s) \text{ real}, x_1 \leq s, \xi \in I^- \text{ and } \operatorname{Re} \varphi(x, y, \xi, s) = 0\}$ where I^+ and I^- are locally closed set in an (n-1)-dimensional co-sphere S^{n-1} and their union $I = I^+ \cup I^-$ is a neighbourhood of ξ^0 in S^{n-1} .

Remark 1. When the space dimension n is larger than 2 the suitable choice of $\chi(z, w, \hat{\xi})$ is important since we cannot solve the Hamilton-Jacobi equations in a real domain in general to obtain $\varphi(x, y, \xi, s)$ for an operator with complex coefficients.

Remark 2. In general, a real analytic function f(x) is said, after Sato, to be of positive type if Im $f(x) \ge 0$ holds when Re f(x)=0. Analogous to this terminology condition (P) may be said as follows: the phase function φ can be chosen to be of half positive type for a suitable choice of the initial condition χ which is of positive type. The notion of the half positive type is the key to the solvability. Compare the fact that the singularity of a good elementary solution for a operator P with real principal symbol is contained in "half of the bicharacteristic strips". (See Kawai [4] about the precise statement.)

Theorem 2. Assume that P satisfies condition (P). Then we can construct E(x, y) for which $P(x, D_x)E(x, y) = \delta(x-y)$ holds near $(0, 0, \hat{\xi}^0, -\hat{\xi}^0)$ as the section of the sheaf C.

Sketch of the proof. We first choose $\chi_j(x, y, \hat{\xi})$ so that they satisfy $\chi(x, y, \hat{\xi}) = \sum_{j=1}^{n} (x_j - y_j)\chi_j(x, y, \hat{\xi})$ and are positively homogeneous of degree 1 with respect to $\hat{\xi}$. Then we define $J(x, y, \hat{\xi})$ by $\frac{\partial(\chi_1, \dots, \chi_n)}{\partial(\hat{\xi}_1, \dots, \hat{\xi}_n)}$ and apply Theorem 1. Finally we define E(x, y) as the boundary value of $\int_{I^+} \omega(\hat{\xi}) \int_{\alpha}^{x_1} E(x_1, z', y, \hat{\xi}, s) ds - \int_{I^-} \omega(\hat{\xi}) \int_{x_1}^{\beta} E(x_1, z', y, \hat{\xi}, s) ds$ from the domain $\{\operatorname{Im} \varphi > 0\}$, where $\omega(\hat{\xi})$ is the volume element $\sum_{j=1}^{n} (-1)^{j-1} \hat{\xi}_j d\hat{\xi}_1$ $\wedge \dots \wedge d\hat{\xi}_{j-1} \wedge d\hat{\xi}_{j+1} \wedge \dots \wedge d\hat{\xi}_n$ and α and β are some constants. The above integral is well-defined by condition (P). It is obvious from the initial condition for $E(z, w, \hat{\xi}, s)$ given in Theorem 1 that $P(x, D_x)E(x, y) = \int_{I} \frac{J(x, y, \hat{\xi})}{(\chi(x, y, \hat{\xi}) + i0)^n} \omega(\hat{\xi})$ holds. By Sato's formula for the curvilinear wave decomposition of δ -function we have $\int \frac{J(x, y, \hat{\xi})}{(\chi(x, y, \hat{\xi}) + i0)^n} \omega(\hat{\xi})$ holds. Thus we have obtained the required E(x, y).

We next investigate the relation between condition (P) and condition $(NT)_f$, which is related to the operator P itself more directly than (P). We denote by $\Gamma_{(x_0,\xi^0)}$ the bicharacteristic strip of $A_m(x,\xi)$ inssuing from (x_0,ξ^0) which satisfies $P_m(x_0,\xi^0)=0$.

Condition $(NT)_f: B_m(x, \xi)$ has a zero of finite even order at $(x'_0, \xi^{0'})$ along $\Gamma_{(x'_0, \xi^{0'})}$ for $|x_0 - x'_0| \ll 1$ and $|\xi^0 - \xi^{0'}| \ll 1$. (Cf. Nirenberg and Treves [7] p. 460. Their condition (\mathcal{P}) admits $B_m \equiv 0$ on some $\Gamma_{(x'_0, \xi^{0'})}$.)

Theorem 3. Condition $(NT)_f$ implies condition (P).

Sketch of the proof. It is sufficient to find a suitable initial condition χ so that the phase function φ becomes of half positive type for some suitable choice of local co-ordinate system. Since we have assumed that P has simple characteristics, $P_m(x,\xi)$ can be decomposed into the form $Q(x,\xi)(\xi_1-a(x,\xi')-ib(x,\xi'))$ near $(x,\xi)=(0,\xi^0)$, where $Q(x,\xi)$ never vanishes near $(0,\xi^0)$ and is positively homogeneous of degree m-1 with respect to ξ and $a(x,\xi')$ and $b(x,\xi')$ are real valued and positively by homogeneous of degree 1 with respect to $\xi'=(\xi_2,\dots,\xi_n)$. Using the invariance property of $(NT)_f$ by multiplication of nonvanishing factor due to Nirenberg and Treves [6] § 2, we can assume that $\xi_1 - a(x, \xi') - ib(x, \xi')$ satisfies condition $(NT)_f$. Thus it is sufficient to investigate the properties of φ which satisfies $\partial \varphi / \partial x_1$ $-a(x, \operatorname{grad}_{x'} \varphi) - ib(x, \operatorname{grad}_{x'} \varphi) = 0.$ We have a unique holomorphic solution of the above first order partial differential equation when the initial condition for φ is given on some non-characteristic surface by the integration of the Hamilton-Jacobi equations in a complex domain since we have assumed that the coefficients of $P(x, D_x)$ are real analytic. So we estimate Im φ using the asymptotic expansion of φ . After the usual real coordinate transformation from (x) to (y) which straightens the bicharacteristic strip through (x_0, ξ^0) , that is, the bicharacteristic strip of $\eta_1 - \tilde{a}(y, \eta')$ is parallel to the y_1 -axis, where $\eta_1 - \tilde{a}(y, \eta')$ is the expression of $\xi_1 - a(x, \xi')$ after the above coordinate transformation. See Nirenberg and Treves [6] p. 21 as for the coordinate transformation. For the sake of simplicity we write (x, ξ) instead of (y, η) after the coordinate transformation and use the letter y to denote a parameter as in Theorem 2. It is obvious from our assumption that we have for some neighbourhood V of the origin in $\mathbb{R}^n b(x,\xi) \ge 0$ in V, or $b(x,\xi) \le 0$ in V. So we assume that $b(x,\xi) \ge 0$ in V. Assuming that $\varphi(x,y,\xi,s)$ has the form $(s-y_1)\xi_1 + \langle x'-y', \xi' \rangle + i|x'-y'|^2 + \sum_{k=0}^{\infty} \varphi_k(x, y, \xi, s)$, where y, ξ and s play the role of parameters, $\varphi_k(x, y, \xi, s)$ are polynomials in (x'-y') of order k and $\varphi_k(s, x', y, \xi, s) = 0$ for every k. Then φ_k 's are determined successively by solving ordinary differential equations and it is not difficult to estimate Im φ for $x_1 \geq s$. (Cf. Nirenberg and Treves [6] pp. 22–25). Thus we conclude that condition (P) follows from $(NT)_{f}$.

Remark. In the above argument we have proved more than (P) because Im $\varphi > 0$ if $x_1 > s$ (or $x_1 < s$). Hence we hope condition (P) will be satisfied even when $B_m(x, \hat{\xi})$ vanishes identically on some bicharacteristic strip of $A_m(x, \hat{\xi})$, but we have not yet proved this fact.

As is clear from the above remark the case which condition $(NT)_f$ covers is one extreme case where P has a local elementary solution. There are two other extreme cases which are easily treated by the theory of pseudo-differential operators of finite type developed in Kashiwara and Kawai [3]. Since the method is just the same as that indicated in the last part of our previous note [4] and its idea is due to Hörmander [2], we do not repeat its procedure in this note but indicate where the changes are needed. Until the end of this note we assume that the vectors $\operatorname{grad}_{\xi} A_m(x,\xi)$ and $\operatorname{grad}_{\xi} B_m(x,\xi)$ are linearly independent whenever $P_m(x,\xi)=0$. In some cases we may use the assumption of the linear independence of $\operatorname{grad}_{(x,\xi)} A_m$ and $\operatorname{grad}_{(x,\xi)} B_m$ on $\{P_m(x,\xi) = 0\}$, but under this weaker assumption we must be more careful in technicalities. Therefore we adopt the above stronger condition of linear independence in this note. **Theorem 4.** Assume that there exists a phase function $\varphi(x, y, \xi)$ satisfying the following conditions (i)~(iv) near $(x, y, \xi) = (0, 0, \xi^0)$. Then we can construct E(x, y) which satisfies $P(x, D_x)E(x, y) = \delta(x-y)$ near $(0, 0, \xi^0, -\xi^0)$ as sections of the sheaf C.

(i) $P_m(x, \operatorname{grad}_x \varphi(x, y, \xi)) = P_m(y, \xi)$

No. 2]

(ii) $\varphi(x, y, \xi) = \langle x - y, \xi \rangle + O(|x - y|^2 |\xi|)$

(iii) $\varphi(x, y, \xi)$ is real analytic near $(0, 0, \xi^{\circ})$ and positively homogeneous of degree 1 with respect to ξ .

(iv) $\varphi(x, y, \xi)$ is of positive type.

The method of the construction of E(x, y) given in our previous note [4] Theorem 2' runs in this case without any essential changes. Remark that $1/P_m(y, \xi)$ is well-defined using the theory of substitutions in the sheaf C (Sato [9]) since we have assumed $\operatorname{grad}_{\xi} A_m$ and $\operatorname{grad}_{\xi} B_m$ are linearly independent when $P_m(x, \xi) = 0$.

Remark. The local elementary solution E(x, y) constructed above plays an essential role to characterize the structure of the sheaf $\operatorname{Coker}_{\mathcal{C}} P^*$ using another pseudo-differential operator. The details will be given in our next note.

We denote by $\overline{P_m}(x,\xi)$ the form with complex conjugate coefficients of $P_m(x,\xi)$, that is, $\overline{P_m}(x,\xi) = \sum_{|\alpha|=m} \overline{a_\alpha(x)} \xi^{\alpha}$ if $P_m(x,\xi) = \sum_{|\alpha|=m} a_\alpha(x) \xi^{\alpha}$.

Theorem 5. Assume that the commutator of $P_m(x, D_x)$ and $\overline{P_m}(x, D_x)$ vanishes identically. Then we can construct a local elementary solution near $(0, 0, \xi^0, -\xi^0)$ for any ξ^0 .

In this case we can integrate the Hamilton-Jacobi equations in a real domain and obtain real valued $\varphi(x, y, \xi)$ satisfying $P_m(x, \operatorname{grad}_x \varphi) = P_m(y, \xi)$ near $(0, 0, \xi^0)$ and positively homogeneous of degree 1 with respect to ξ . Thus the proof is just the same as in our previous note [4] Theorem 2'.

Remark. If $P_m(x, y, D_x, D_y)$ has the form $Q_m(x+iy, D_x-iD_y)$ for some $Q_m(z, \zeta)$, then the condition of Theorem 5 is trivially satisfied. Therefore such an operator is very close to an operator with real principal symbol from the viewpoint of the behaviour of the characteristic surfaces. Such a class of operators appeared in a discussion with Sato and Kashiwara.

References

- Hamada, Y.: The singularities of the solutions of the Cauchy problem. Publ. R.I.M.S. Kyoto Univ. Ser. A, 5, 21-40 (1969).
- [2] Hörmander, L.: On the singularity of solutions of partial differential equations. Proc. Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press, pp. 31-40 (1969).
- [3] Kashiwara, M., and T. Kawai: Pseudo-differential operators in the theory of hyperfunctions. Proc. Japan Acad., 46, 1130-1134 (1970).

T. KAWAI

- [4] Kawai, T.: Construction of a local elementary solution for linear partial differential operators. I. Proc. Japan Acad., 47, 19-23 (1971).
- [5] ——: On the local theory of (pseudo)-differential operators. Reports of the Symposium on the Theory of Hyperfunctions. R. I. M. S. Kyoto University, pp. 1-45 (1970) (in Japanese).
- [6] Nirenberg, L., and F. Treves: On local solvability of linear partial differential equations, Part I. Comm. Pure Appl. Math., 23, 1-38 (1970).
- [7] —: On local solvability of linear partial differential equations, Part II. Ibid., 23, 459-510 (1970).
- [8] Sato, M.: Hyperfunctions and partial differential equations. Proc. Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press, pp. 91-94 (1969).
- [9] ——: On the structure of hyperfunctions. Sûgaku no Ayumi, 15, 9-72 (1970) (Notes by Kashiwara, in Japanese).