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1. Introduction and main theorem. The object o this note is
to show that concerning the asymptotic distribution of eigenvalues of
elliptic operators the results similar to those of S. Agmon [1], [2],
R. Beals [3], etc. hold under somewhat different assumptions. Only an
outline of the proof is presented here and the details will be published
elsewhere.

Let/2 be a bounded domain of Rn having the restricted cone prop-
erty ([2]). Let V be a closed subspace of H(f2) containing/:/(/2) and
a(u, v) be a symmetric integro-differential sesquilinear form of order m"

Ia(u, v)= a(x)DuDv dx.

It is assumed that there exists a positive constant 8 such that
a(u, u) >= u I1 for any u e V.

It is also assumed that 2mn. We denote by V* the antidual of V.
Then according to the usual convention we may consider V L2(9) V*
algebraically and topologically. Let A be the operator associated with
the sesquilinear form a"

a(u, v)--(Au, v) for u, v V,
where the bracket on the right denotes the pairing between V* and
V. A is a bounded linear operator on V onto V*. For x e/2 let (x)
min {1, dist (x, 3t9)}. We denote by N(t) the number of eigenvalues

of A which do not exceed t0.
Theorem. Suppose that the coefficients of the highest order

terms of a are Hoelder continuous of order h and other coefficients are
bounded and measurable. Suppose also that

(x)-dx <
for some positive number pl. Under the hypotheses stated above
we have
( 1 ) N(t)- COtn/2m - O(t(n-e)/’)
as tc where
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C0=
sin (nT 2m) f Co(X)dx,
n/2m

c0(x)=(2u)- { a.(x)"+l}-ld,
and 0 is an arbitrary positive number smaller than h/ (h + 3).

Furthermore if a., al-Ifl]=m, are functions of class C+(9)
where is a domain containing 9, and a., Il+lfll-2m-1, are of
class C+(9), and a., lal+lfl]-2m-2, are of class C(9), then (1) holds
for any 0 (0, (h + 2) (h + 5)).

Remark. In this theorem it is assumed that 2mn; however, the
domain o A considered as a closed operator in L(9) need not be con-
tained in H(9). The existence of such an example is shown by the
ollowing observation. Letting (x, y) be the generic point of R we
consider the function u:3/2 sin (30/2)- Im (x +iy)3/. In the upper
halfplaney0 Au--0 andhence Au=0. For xO,y=Ou--3u/3y2=O,
and for x 0, y-O u/y-3u/y-O. Near the orgin u e H although
u e H2 there.

2. Outline of the proof of the main theorem.
Lemma 1. Let S be a bounded linear operator on V* to V, then

S has a kernel M in the following sense"

(Sf)(x)=[ M(x, y)f(y)dy for f e L(9).
J

There exists a constant C such that

for any x, y . Here sIl,w denotes the norm of S considered as an
operator on V* to V and similarly for other norms.

Proof. Applying Sobolev’s inequality as a unction of y
M(x, Y)I X M(x, )

Taking into account that L(9) is dense in V* we have

M(x, ),-- sup,., I.M(x, y)f(y)dy

Again by Sobolev’s inequality

Hence

IIM(x,.) lo can be estimated in a similar manner and combining these
inequalities we obtain the lemma.

For a complex number 2 let d(2) be the distance rom 2 to the
positive real axis.

Lemma 2. There exists a constant C such that
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(A-.)- I1,,._., C I’./d(.),
(A 2) -111:-. ,’,, d()-.

Let A be the operator associated with the restriction of a to
/() x/4()

a(u, v)=(Au, v) or u, v e ().
A is a bounded operator on (9) onto the antidual H_(9) of (9).
The inequalities similar to the ones stated in Lemma 2 hold or A.
Let K and K be the kernels of (A--2)- and (A--2)- respectively.

Lemma . For any pO the following inequality holds"

IK(x x)-K(x x)l<C I1 ( Ill-z )"d(2) (x)d(2) 1211,

where C is a constant depending on p but not on x and .
This lemma can be proved applying Lemma 1 to the operator

Sf ((A-2)-f--(A-- )-(rf))
where is a smooth function with a small support near x and rf is
the restriction of f e V* to (9).

Lemma 4. Under the present assumptions the following ine-
quality holds for any p O

IKi(x, X)--Co(X)(--)n/-’I

(2) a()(2) +CI21(-)z-’

fo 1211, g(2)121’-z,A o() og
in he main heorem and C is a consan depending on p bu no on x
and .

Combining the above lemmas and Malliavin’s tauberian theorem
we obtain the main theorem.
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