59. Invariancy of Plancherel Measure under the Operation of Kronecker Product

By Nobuhiko Tatsuuma
Department of Mathematics, Kyôto University

(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1971)

1. Let G be a unimodular locally compact group of type I. For such a group, so-called Plancherel formula was given by F. I. Mautner [2], I. E. Segal [3], and H. Sunouchi [4], as follows.

Consider the dual \hat{G} (the set of all equivalence classes of irreducible unitary representations) of G, and put $U_{f}(\omega)=\int_{G} f(g) U_{g}(\omega) d g$ for any function f in $L^{1}(G)$ and any unitary representation $\omega=\left\{\mathfrak{S}_{\mathrm{C}}(\omega), U_{g}(\omega)\right\}$ of G. Then, there exists a measure μ (Plancherel measure) over \hat{G}, such that for any function f in $L^{1}(G) \cap L^{2}(G)$, the equation (1) is valid.

$$
\begin{equation*}
\|f\|^{2}=\int_{\hat{\sigma}}\left\|U_{f}(\omega)\right\| \|^{2} d \mu(\omega) \tag{1}
\end{equation*}
$$

Here $\left|\left|\left|U_{f}(\omega)\right|\right|\right|$ is the Hilbert-Schmidt norm of the operator $U_{f}(\omega)$.
This formula is considered as an extension of the Plancherel formula for abelian locally compact groups. But in this abelian case, \hat{G} becomes an abelian locally compact group too, and the Plancherel measure μ is just invariant measure over \hat{G}.

The group operation of \hat{G} is given by the ordinary product of characters as functions on G, that is, the Kronecker product of 1-dimensional representation. So the invariancy of Plancherel measure is that,

$$
\begin{equation*}
d \mu\left(\chi_{0} \otimes \chi\right)=d \mu(\chi), \quad \text { for any } \chi_{0} \text { in } \hat{G} \tag{2}
\end{equation*}
$$

and this is equivalent to,

$$
\begin{align*}
& \int_{\hat{G}}\left|\tilde{f}\left(\chi_{0} \otimes \chi\right)\right|^{2} d \mu(\chi)=\int_{\hat{G}}|\tilde{f}(\chi)|^{2} d \mu(\chi) \tag{3}\\
& \quad \text { for any } \chi_{0} \text { in } \hat{G} \text { and } f \text { in } L^{1}(G) \cap L^{2}(G)
\end{align*}
$$

Here \tilde{f} shows the Fourier transform of f.
In general case, an analogue of (3) may be constructed as follows. At first, by virtue of (1), we replace Fourier transform \tilde{f} of function f by the operator-valued function $U_{f}(\omega)$, then the term $\left|\tilde{f}\left(\chi_{0} \otimes \chi\right)\right|^{2}$ is replaced by $\left|\left\|U_{f}\left(\omega_{0} \otimes \omega\right)\right\|\right|^{2}$.

On the other hand, the well-known relation $\omega_{0} \otimes \Re \sim \sum_{\text {dim } \omega_{0}} \oplus \Re$, for the regular representation \mathfrak{R} and any representation ω_{0}, suggests that, in general form, the factor $\left(\operatorname{dim} \omega_{0}\right)^{-1}$ is needed in the left hand side. So, one of the purposes of this paper is to show the equation (4) for finite dimensional representation ω_{0}.

$$
\begin{equation*}
\left(\operatorname{dim} \omega_{0}\right)^{-1} \int_{\hat{G}}\| \| U_{f}\left(\omega_{0} \otimes \omega\right)\left\|\left.\right|^{2} d \mu(\omega)=\int_{\hat{G}}\left|\left\|U_{f}(\omega)\right\|\right|^{2} d \mu(\omega)\right. \tag{4}
\end{equation*}
$$

For the case when ω_{0} is infinite dimensional the left hand side of (4) is meaningless, so we have to take some modification.

The definition of the Hilbert-Schmidt norm gives,

$$
\begin{equation*}
\left\|U_{f}\left(\omega_{0} \otimes \omega\right)\right\|\left\|^{2}=\sum_{j} \sum_{k}\right\| U_{f}\left(\omega_{0} \otimes \omega\right)\left(v_{j}\left(\omega_{0}\right) \otimes v_{k}(\omega)\right) \|^{2} . \tag{5}
\end{equation*}
$$

Here $\left\{v_{j}\left(\omega_{0}\right)\right\}$ and $\left\{v_{k}(\omega)\right\}$ are any orthonormal basis in $\mathscr{S}_{\mathfrak{E}}\left(\omega_{0}\right)$ and $\mathscr{S}_{\mathfrak{C}}(\omega)$ respectively.

For fixed basis $\left\{v_{j}\left(\omega_{0}\right)\right\}$ of $\mathscr{S}_{2}\left(\omega_{0}\right)$, we take a partial sum of (5) with respect to j, and put

$$
\begin{equation*}
\phi_{N}(\omega) \equiv \frac{1}{N} \sum_{j}^{N}\left(\sum_{k}\left\|U_{f}\left(\omega_{0} \otimes \omega\right)\left(v_{j}\left(\omega_{0}\right) \otimes v_{k}(\omega)\right)\right\|^{2}\right), \tag{6}
\end{equation*}
$$

then our required equation is

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{\hat{G}} \phi_{N}(\omega) d \mu(\omega)=\int_{\hat{G}}\left|\left\|U_{f}(\omega)\right\|\right|^{2} d \mu(\omega) . \tag{7}
\end{equation*}
$$

But, in this paper, we get the stronger result as follows.
Theorem. For any $v\left(\omega_{0}\right)$ in $\mathfrak{S}\left(\omega_{0}\right)$, such that $\left\|v\left(\omega_{0}\right)\right\|=1$, the equation (8) is valid.

$$
\begin{gathered}
\int_{\hat{\sigma}} \sum_{k}\left\|U_{f}\left(\omega_{0} \otimes \omega\right)\left(v\left(\omega_{0}\right) \otimes v_{k}(\omega)\right)\right\|^{2} d \mu(\omega)=\left.\int_{\hat{\alpha}}\left\|U_{f}(\omega)\right\|\right|^{2} d \mu(\omega), \\
\text { for any } f \text { in } L^{1}(G) \cap L^{2}(G) .
\end{gathered}
$$

Evidently (4) and (7) are immediate results of (8).
Lastly we shall give an example, for which the limiting process in (7) can't enter under the integral sign, i.e.,

$$
\begin{equation*}
\int_{\hat{G}} \lim _{N \rightarrow \infty} \phi_{N}(\omega) d \mu(\omega) \neq \int_{\hat{G}}\| \| U_{f}(\omega) \|\left.\right|^{2} d \mu(\omega) . \tag{9}
\end{equation*}
$$

2. Proof of the theorem. The proof is given by direct calculations. We take $v\left(\omega_{0}\right),\left\{v_{k}(\omega)\right\}, f$, as in the theorem, and an orthonormal basis $\left\{v_{l}\left(\omega_{0}\right)\right\}$ in $\mathfrak{S}_{\mathrm{C}}\left(\omega_{0}\right)$.

$$
\begin{aligned}
I= & \int_{\hat{G}} \sum_{k}\left\|U_{f}\left(\omega_{0} \otimes \omega\right)\left(v\left(\omega_{0}\right) \otimes v_{k}(\omega)\right)\right\|^{2} d \mu(\omega) \\
= & \int_{\hat{G}} \sum_{k}\left\|\int_{G} f(g)\left(U_{g}\left(\omega_{0}\right) v\left(\omega_{0}\right) \otimes U_{g}(\omega) v_{k}(\omega)\right) d g\right\|^{2} d \mu(\omega) \\
= & \int_{\hat{G}} \sum_{k}\left\{\int_{G} \int_{G} f\left(g_{1}\right) \overline{f\left(g_{2}\right)}\left\langle U_{g_{1}}\left(\omega_{0}\right) v\left(\omega_{0}\right), U_{g_{2}}\left(\omega_{0}\right) v\left(\omega_{0}\right)\right\rangle\right. \\
& \left.\times\left\langle U_{g_{1}}(\omega) v_{k}(\omega), U_{g_{2}}(\omega) v_{k}(\omega)\right\rangle d g_{1} d g_{2}\right\} d \mu(\omega) \\
= & \int_{\hat{G}} \sum_{k}\left\{\int_{G} \int_{G} f\left(g_{1}\right) \overline{f\left(g_{2}\right.}\right) \sum_{l}\left\langle U_{g_{1}}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle \\
& \times \overline{\left.\left\langle U_{g_{2}}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle\left\langle U_{g_{1}}(\omega) v_{k}(\omega), U_{g_{2}}(\omega) v_{k}(\omega)\right\rangle d g_{1} d g_{2}\right\} d \mu(\omega) .}
\end{aligned}
$$

But in the right hand side, the absolute value of the integrand is bounded by

$$
\begin{aligned}
& \int_{G} \int_{G}\left|f\left(g_{1}\right)\right|\left|f\left(g_{2}\right)\right| \sum_{l}\left|\left\langle U_{g_{1}}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle\right|\left|\left\langle U_{g_{2}}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle\right| \\
& \times\left|\left\langle U_{g_{1}}(\omega) v_{k}(\omega), U_{g_{2}}(\omega) v_{k}(\omega)\right\rangle\right| d g_{1} d g_{2} \\
\leqq & \int_{G} \int_{G}\left|f\left(g_{1}\right)\right|\left|f\left(g_{2}\right)\right|\left(\sum_{l}\left|\left\langle U_{g_{1}}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle\right|^{2}\right)^{1 / 2} \\
& \times\left(\sum_{l}\left|\left\langle U_{g_{2}}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle\right|^{2}\right)^{1 / 2}\left\|U_{g_{1}}(\omega) v_{k}(\omega)\right\|\left\|U_{g_{2}}(\omega) v_{k}(\omega)\right\| d g_{1} d g_{2} \\
\leqq & \left\{\int_{G}|f(g)|\left\|U_{g}\left(\omega_{0}\right) v\left(\omega_{0}\right)\right\|\left\|v_{k}(\omega)\right\| d g_{1}\right\}^{2}=\left\{\int_{G}|f(g)| d g\right\}^{2} .
\end{aligned}
$$

So by the Fubini's theorem, we can take the sum by l before the integrals by g_{1}, g_{2}.

$$
\begin{aligned}
I= & \int_{\hat{G}} \sum_{k} \sum_{l} \int_{G} \int_{G} f\left(g_{1}\right) \overline{f\left(g_{2}\right)}\left\langle U_{g_{1}}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle \overline{\left\langle U_{g_{2}}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle} \\
& \times\left\langle U_{g_{1}}(\omega) v_{k}(\omega), U_{g_{2}}(\omega) v_{k}(\omega)\right\rangle d g_{1} d g_{2} d \mu(\omega) \\
= & \int_{\hat{G}} \sum_{k} \sum_{l}\left\|\int_{G} f(g)\left\langle U_{g}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle U_{g}(\omega) v_{k}(\omega) d g\right\|^{2} d \mu(\omega) \\
= & \sum_{l} \int_{\hat{G}} \sum_{k}\left\|U_{f \times u_{l}}(\omega) v_{k}(\omega)\right\|^{2} d \mu(\omega)
\end{aligned}
$$

Here $u_{l}(g) \equiv\left\langle U_{g}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle$.

$$
\begin{aligned}
I & =\sum_{l} \int_{G}\left|\left\|U_{f \times u_{l}}(\omega)\right\|\right|^{2} d \mu(\omega)=\sum_{l} \int_{G}\left|f(g) u_{l}(g)\right|^{2} d g \\
& =\int_{G} \sum_{l}|f(g)|^{2}\left|\left\langle U_{g}\left(\omega_{0}\right) v\left(\omega_{0}\right), v_{l}\left(\omega_{0}\right)\right\rangle\right|^{2} d g \\
& =\int_{G}|f(g)|^{2}\left\|U_{g}\left(\omega_{0}\right) v\left(\omega_{0}\right)\right\|^{2} d g=\int_{G}|f(g)|^{2}\left\|v\left(\omega_{0}\right)\right\|^{2} d g \\
& =\int_{G}|f(g)|^{2} d g=\int_{\hat{G}} \mid\left\|U_{f}(\omega)\right\|^{2} d \mu(\omega)
\end{aligned}
$$

That is, the equation (8) is proved.
Corollary. If $\operatorname{dim} \omega_{0}<+\infty$, then,

$$
\begin{equation*}
\left(\operatorname{dim} \omega_{0}\right)^{-1} \int_{\hat{G}}\left|\left\|U_{f}\left(\omega_{0} \otimes \omega\right)\right\|\right|^{2} d \mu(\omega)=\int_{\hat{G}} \mid\left\|U_{f}(\omega)\right\| \|^{2} d \mu(\omega) \tag{10}
\end{equation*}
$$

for any f in $L^{1}(G) \cap L^{2}(G)$.
3. Example. Let G be the real unimodular group of second order. Now we shall construct f, ω_{0} on G for which the inequality (9) is valid. We quote the notations in the previous paper [5].

At first, we fix the positive integer (or half-integer) m ($\geqq 3 / 2$), and the normalized highest vector v_{m} in $\mathcal{S}_{\mathrm{S}}\left(D_{m}^{-}\right)$, that is, v_{m} is determined up to constant factor as the vector satisfying

$$
\begin{equation*}
F^{+}\left(D_{m}^{-}\right) v_{m}=0 \tag{11}
\end{equation*}
$$

Put

$$
\begin{equation*}
f(g) \equiv \overline{\left\langle U_{g}\left(D_{m}^{-}\right) v_{m}, v_{m}\right\rangle} \tag{12}
\end{equation*}
$$

then the V. Bargmann's results ([1]) and calculations of eigenvalue for Laplacian show the followings,
(a) $f(g)$ is in $L^{1}(G) \cap L^{2}(G)$.
(b) For given irredudicble representation ω and its canonical
basis $\left\{\zeta_{k}(\omega)\right\}$ (cf. [5] p. 318),

$$
\begin{align*}
\left\langle U_{f}(\omega) \zeta_{k}(\omega), \zeta_{l}(\omega)\right\rangle & =\int_{G} \overline{\left\langle U_{g}\left(D_{m}^{-}\right) v_{m}, v_{m}\right\rangle}\left\langle U_{g}(\omega) \zeta_{k}(\omega), \zeta_{l}(\omega)\right\rangle d g \\
& =(2 m-1)^{-1} \delta_{m,-k} \delta_{m,-l}, \quad \text { for } \omega=D_{m}^{-}, \tag{13}\\
& =0, \quad \text { for } \omega=D_{n}^{-}(n \neq m), D_{n}^{+}, C_{l}^{t}, I .
\end{align*}
$$

(b) shows that,

$$
\begin{gather*}
U_{f}(\omega) v(\omega)=0, \quad \text { for } \omega \neq D_{m}^{-} \tag{14}\\
U_{f}\left(D_{m}^{-}\right) v=(2 m-1)^{-1}\left\langle v, v_{m}\right\rangle v_{m}, \quad \text { for } v \in \mathscr{S}_{\mathcal{E}}\left(D_{m}^{-}\right) . \tag{15}
\end{gather*}
$$

That is,

$$
\begin{align*}
\left\|U_{f}(\omega)\right\| \|^{2} & =(2 m-1)^{-2}, & & \text { for } \omega=D_{m}^{-} \tag{16}\\
& =0, & & \text { otherwise }
\end{align*}
$$

From the definition of the Hilbert-Schmidt norm, it is easy to see that

$$
\left\|\left.\left\|U_{f}\left(\omega_{0} \otimes \omega\right)\right\|\right|^{2}=d\left|\left\|U_{f}\left(D_{m}^{-}\right)\right\|\right|^{2}=d(2 m-1)^{-2}\right.
$$

Here d is the multiplicity of D_{m}^{-}-components in the representaiton $\omega_{0} \otimes \omega$.

On the other hand, we can deduce the following by just similar arguments as the proof of Proposition 1 in [5].

Lemma. For fixed s (positive integer or half-integer), $D_{s}^{+} \otimes \omega$ contains D_{m}^{-}once time only when $\omega=D_{n}^{-}(n \geqq s+m$, and $m+n+s$; integer). And for the other irreducible $\omega, D_{s}^{+} \otimes \omega$ does not contain D_{m}^{-}.

This lemma determines the value of the function, $\left|\left\|U_{f}\left(D_{s}^{+} \otimes \omega\right)\right\|\right|^{2}=(2 m-1)^{-2}, \quad$ for $\omega=D_{n}^{-}(n \geqq s+m, m+n+s$; integer $)$,

$$
=0
$$

otherwise.

That is, for $\omega_{0}=D_{s}^{+}$,

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \phi_{N}(\omega) & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j}^{N} \sum_{k}^{\infty}\left\|U_{f}\left(D_{s}^{+} \otimes \omega\right)\left(\zeta_{j}^{s} \otimes \zeta_{k}(\omega)\right)\right\|^{2} \\
& \leqq \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j}^{\infty} \sum_{k}^{\infty}\left\|U_{f}\left(D_{s}^{+} \otimes \omega\right)\left(\zeta_{j}^{s} \otimes \zeta_{k}(\omega)\right)\right\|^{2} \\
& \left.=\lim _{N \rightarrow \infty} \frac{1}{N} \right\rvert\,\left\|U_{f}\left(D_{s}^{+} \otimes \omega\right)\right\|^{2} \equiv 0
\end{aligned}
$$

So that,

$$
\begin{aligned}
& \int_{\hat{G}} \lim _{N \rightarrow \infty} \phi_{N}(\omega) d \mu(\omega)=0, \\
& \int_{\hat{G}}\left|\left\|U_{f}(\omega)\right\|\right|^{2} d \mu(\omega)=\int_{G}|f(g)|^{2} d g=(2 m-1)^{-1} \neq 0 .
\end{aligned}
$$

References

[1] V. Bargmann: Irreducible unitary representations of the Lorentz group. Ann. of Math., 48, 568-640 (1947).
[2] F. I. Mautner: Unitary representations of locally compact groups. I: Ann. of Math., 51, 1-25 (1950), II: Ann. of Math., 52, 528-556 (1950).
[3] I. E. Segal: An extension of Plancherel's formula to separable unimodular groups. Ann. of Math., 52, 272-292 (1950).
[4] H. Sunouchi: An extension of Plancherel formula to unimodular groups. Tôhoku Math. J., 4, 216-230 (1952).
[5] N. Tatsuuma: A duality theorem for the real unimodular group of second order. J. Math. Soc. Japan, 17, 313-332 (1965).

