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Remarks on the Eichler Cohomology
of Kleinian Groups
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Department of Mathematics, Shizuoka University

(Comm. by Kinjir6 KUNUGI, M. J.A., March 12, 1971)

1. Let F be a finitely generated kleinian group, /2 its region of
discontinuity, A its limit set and 2 (z)Idzl the Poincar metric on/2. We
denote by z] an arbitrary F-invariant union of components of /2. In
this note we assume that 2/F is a finite union of compact Riemann sur-
faces, and consider relations between the Kra and the Ahlfors decom-
positions for H(F, II_).

2. We fix an integer q>=2. Let be an F-module. A mapping
p" F- is called -cocycle if p.--p.. B/p, A, B F. If f e , its
coboundary (f is the cocycle Af. A--f, A F. The first cohomology
space H(F, ) is the space of cocycles actored by the space o cobounda-
ries. The F-modules used in this note are (1) llq_, the vector space
o complex polynomials in one variable o degree at most 2q--2, with
v. A(z)- v(Az)A’(z)l-q, v e I12_2 and A e F and (2) Hr(z])(Mr(z])) the vector
space o holomorphic (meromorphic) unctions on z/, with f.A(z)
=f(Az)A’(z)1-, f e Hr(zl)(M(z])), A e F, where r is an integer. We call
H(,F) and M(,F), the spaces ot holomorphic and meromorphic auto-
morphic orms o weight (--2r) on z] or F, respectively. Two mero-
morphic (holomorphic) Eichler integrals o order 1--q are identified i
they differ an element o//_.. This identification space is denoted by
E_(, F)(E_(,F)). I a, a, ..., a_ are distinct points in zl and

e H(z/, F), then

r(z)-- (z--a1)... (z--a.,_l) 2-()()d/hd

is a potential for (Bers [2]). We denote by Pot () a potential for .
A mapping or" E_q(z], F)HI(F, IIq_) is defined as cr(f)=f. A--f for

f e E_q(z], F) and A e F. A mapping /3*" Hq(z], F)HI(F, II2q_) is
defined by setting /9*()-- Pot (). A-- Pot () for e Hq(z/, F).

Theorem A (The Kra decomposition). Every p e Hi(F, II2q_2) can
be written uniquely as p=a(f)/ fl*() with fe E_(,F) and e H(Z,F).

3. For f e El_q(z], F), the polynomials f(Az)A’(z)l-"--f(z) are the
periods o f, and we write f(Az)A’(z)l-"--f(z)-pdf(z). The periods
determine a canonical isomorphism pd" EI_q(, F)-HI(F, II_). Thus
pdf, f e EI_q(, F), is a cohomology class and pdEl_q(, F) is the image
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Of E_(A, F) under the period mapping.
Theorem B (The Ahlors theorem).

Hi(F, I12_)- pd&_,(3, F).
Let 3/F--S U U S, S, being eompaet Riemann surfaces. Choose

a point e ll-(S) which is not an elliptic fixed point nor a q-Weier-
strass point, where II" 3---3/F is the natural projection mapping. Let
d-dim (H(3,F) II-(S)). Set g(z,)-,er (z-A-A’(),z e f2, el2.
Here we may assume without any loss of generality that
is not elliptic fixed point. Define &(z, )-8-g/8-, and set G(z)
=&(z,), v=l,2,...,d (Ahlfors [1] and Kra [7]). We denote by
E1_(3, F) the space spaned by G(z), - 1, ., d j- 1, 2, ., n. Then
Theorem B implies

Theorem B’ (el. Kra [7]).
H(F, II2_2)--pdE_(3,1") +pdE_(3, V).

Let g E,_(3, F). We set fl*A(g)--g(Az)A’(z)--g(z) for all A e F.
4. If F is a fuehsian group on the upper half plane U of the first

kind without parabolic elements, a mapping * "He(U, [’)--H(F,
is defined as

1 o (z--)-25()d, H(U, F) and A e F,

where z0 U. Then by a similar method as Gunning [5] we have
Theorem 1. (1) Let 1" be a finitely generated kleinian group

with A/F is a finite union of compact Riemann surfaces. We take
peHl(F, ITIq_). Let p--a(fl)+fl*(),feE_q(A,F) and Oe Hq(ZI, F), and
p-- a(f) + fl*(g), f e E_q(A, F) and g e E_(A, F) be the Kra and the

Ahlfors decompositions, respectively, then
(b, 0)- 2ri Res (g) for any Hq(A, F),

where we define (, ) as (, 0)- 1/2i 2()-()O()dAd.
(2) In particular when F is a fuchsian group of the first kind

without parabolic elements, then
a(f)--(2q--2) *(Dq-lf) for f E_q(A, F) and A e F.

Proof. (1) (f f)(Az)A’(z)1-q (f-- f)(z) + Pot ()(nz)A’(z)-q
--Pot()(z)-g(Az)A’(z)*---g(z) *or all A e F, so that h(Az)A’(z)-=h(z) for all A e F, where we set f,--f=fe E_(zl, F) and h--g--f
--Pot (). By definition, or any p e Hv(l, F),

(z)dzA 8(Pot ()(z)),
which does not depend on the choice of o), where o) is a fundamental
region in A for F, that is, o)--J\ (ooA), oo is a fundamental region
in A for F, since A/F=.= A/F (Bers [9.]). Applying" Stokes’ theorem
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we have

(, )--| Pot ()(z)(z)dz

27i Res (g),
because arcs o 3w are identified in pairs by elements o E and in view

o h@dz is F-invariant, so that [ hdz--O, and f@ is holomorphic unc-
tion in w, so that Res (f@)--0.

(2) *(Dq-f)--l/(2q--2) f: (z--)q-Vq-lf(C)d
--lz

=1/(2q--2) (Az--)2q-2D2q-lf()dxA’(z)l-q
go

_-o(Z-- -)2q-2D2q-

Set h(z)--l/(2q--2)[ (z--)2q-Dq-lf()d. Then h E_(U,F). In

fact, first, h(A)A’(z)l-q- h(z) 1,/(2q- 2) ![ (z )q-Dq-f()cl
JA--lz

--v(z), v IIq_.. Secondly, setting D2q-h--, we have by the Cauchy
formula

(Az)A’(z)q--(2q-- 1) /27i h() /(--Az)qd A’(z)q

d GAz
(2q-- 1) h(Az) dAw A’(z)q

2ri ecz (Aw--Az)
(2q--l) ( h(w)dw

27ci ecz (w z)q + dw
,cc (w-- z)2q

where Cz and C are small circles about the points z and Az, respec-

tively. Since v IL.q_2, _Jecv(w) (w- z)qdw-O and hence

(Az)A,(z)q_ (2q-- 1) f h(w) dw-- (z).
27i ec (w-- z)q

On the other hand we see easily Dq-h(z)--Dq-f(z), and hence h
=f+ v, v e Hq_. Thus we have

(2q--2) *(D"-f)(z)= h(nz)n’(z)-q- h(z)
f(Az)A’(z)--f(z) + v(Az)A’(z)--v(z)-- a(f)(z)

or all A F. Our proo is now complete.
Remark. It is easy to see by modifying the above proo that

Theorem 1 (2) is satisfied in the case o which F is a finitely generated
kleinian group without parabolic elements with an simply connected
invariant component

5. We denote by H(IN, lI2q_) the subspace of H(F,//2q-2) each
element p of which has decompositions p-- a(f) + fl*()-- a(f) + fl*(g),
f e E_q(A, F), Hq(A, F) and g e E_q(A, F).
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Theorem 2. I F is a kleinian group with an invariant region
and A/1" is compact, then

dim Hq(l, F) <= dim H(F, 1Lq_) __< 2 dim Hq(A, F).
The first inequality becomes equality when F is a Schottky group, and
the second one is attained in the case that F is a fuchsian group of the

first kind without parabolic elements.
Lemma 1 (Bets [2]). Let F be a fuchsian group of the first kind

without parabolic elements. Then for any p a(E_q(U, F)), there
exists a Hq(L, F) such that fl*()-p, and for any p fl*(Hq(U, F)),
there exists an f E_q(L, F) such that a(f)=p, where L is the lower

half plane.
The proo o Theorem 2. The second inequality is obvious from

dim H(F, q_)2 dim Hq(, ) (see Kra [6]).
Let d-dim Hq(A, F) and e-dim E_q(A, F). First we remark that

de (Kra [6]). Let ,, ..., be a basis of Hq(A, F) and f, f, ...,f
be that of E_q(A,F). Then fl*(), fl*(),..., *() is a basis of
fl*(Hq(A, F)) and a(f), a(f), ..., a(f), is that of a(E_q(A, F)). Hence
we have

*(2):a2(f) + + a2e(fe) + *(g2)

where a e C (i- 1, 2, ., d ]- 1, 2, ., e).

a22" "a2e]eRank a2

Therefore there are linear independent ,, ,_ and g,g,. .,g_
with e Hq(, F) and g e E_q(, F) (i= 1, 2,... d--e) such that ()

(g). Since a(E_q(A F)) H(F, Hq_) we have
dim H (F, dim q(E_q(A, F)) + d- e

=e+d-e=d.
If F is a Schottky group, then a(E_q(A,F))--O and *(_q(A,F))

Hi(F, Hq_)= fl*(Hq(A, F)), so that dim H(F, Hq_)- dim H(F, Hq_)
=dim Hq(A, F). Let F be a fuchsian group of the first kind without
parabolic elements. First we show that for any p e fl*(E_q(U, F)) there
exists a unction f e E?_q(U, F) such that a(f)--p. Set p- fl*(g). From
the construction of the unctions g, i-- 1, 2, ., d, we see that the rune-
tion g is holomorphic on L and satisfies g(Az)A’(z)-q--g(z)--p(z), z e L
for all A e F. Thus g e E_q(L, F). Hence p=a(g), where denote
an operator of a in L. From Lemma 1 there exists e Hq(U, F) such
that p- a(g)= fl(), which shows fl*(E_q(U, F)) fl*(Hq(U, F)) where
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* means an operator of * in U. As we saw in 4, dim (g_(U, 1"))
-dim H(U,F), but the latter is equal to dim *(H(U,F)), so that
*(EI_q(U, 1")) *(Hq(U, F)). If p---- c(fl) - *() =_ a(f2) - *(g) with

f, f2 e E_(U, F), e H(U, 1") and g e E_(U, F), then a(f)-- a(f), that
is, f=-f2 and fl*()- fl*(g). Thus H(F,//2-2)-H(F, H_2). In con-
clusion, from dim H(F,//2-2) =2 dim H(U, F) (see Kra [6]) we have
dim H(/’, H2_2)-2 dim H(U, 1"). Our proof is now complete.

From Theorem 1 (2) and Theorem 2 we have the following
Corollary 1. Let 1" be a fuchsian group of $he first kind without

parabolic elements. If p e HI(F,H2_2) is represented as p-(f)+*()
with A e E_q(U, F) and e Eq(U, F), and p--(2q--2) $(D2q-f2) -- fl*(g)
with f e E_q(U, F) and g e _q(U, F), then f=fi. and fl*(Hq(U, F))
*(_(u, F)).
The following corollary is obtained by the method of Kra [6] and

Corollary 1 of Theorem 2.
Corollary 2. Let 1" be a fuchsian group of the first kind without

parabolic elements. If both holomorphic part and meromorphic part
of an Eichler integral f have real periods for all elements in 1" then
pdf-O, that is, f=f+ v, f e M(U, 1") and v e H2q_2. Here pdf is real
means that for every A e F, the all coefficients of pdf are real.
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