84. The Additive Structure of the Unrestricted Z_{p}-Bordism Groups $\mathcal{O}_{n}\left(\mathrm{Z}_{p}\right)$

By Ching-Mu Wu*)
Kyoto University, Kyoto and Tunghai University, Taiwan
(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1971)

Introduction. In this note we compute the additive structure of $\mathcal{O}_{n}\left(Z_{p}\right)$ and obtain that for $n \geqslant 0$,

$$
\mathcal{O}_{n}\left(Z_{p}\right) \approx \begin{cases}2 \text {-torsion } & \text { for } n \text { odd, } \\ \text { free }+2 \text {-torsion } & \text { for } n \text { even }\end{cases}
$$

where the 2-torsion part consists of elements of order two.
We also compute the generators of $\mathcal{O}_{n}\left(Z_{3}\right)$ for $n \leqslant 7$, and study its connection with the Ω-module structure of $\mathcal{O}_{*}\left(Z_{3}\right)$ which we have determined in [5].

1. The additive structure of $\mathcal{O}_{n}\left(\boldsymbol{Z}_{p}\right)$. We consider all $\left(M^{n}, T\right)$ of Z_{p}-actions which form the Z_{p}-bordism group $\mathcal{O}_{n}\left(Z_{p}\right)$. First we shall need the exact sequence

$$
0 \longrightarrow \Omega_{n} \xrightarrow{i_{*}} \mathcal{O}_{n}\left(Z_{p}\right) \xrightarrow{\nu} \mathfrak{M}_{n}\left(Z_{p}\right) \xrightarrow{\partial} \tilde{\Omega}_{n-1}\left(Z_{p}\right) \longrightarrow 0
$$

which we already have in [5, Cororally 1.1]. Here $\widetilde{\Omega}_{n-1}\left(Z_{p}\right)$ is the reduced, fixed point free, Z_{p}-bordism group, and $\mathfrak{M}_{n}\left(Z_{p}\right)=\sum_{k \geqslant 0} \Omega_{n-2 k}\left(B\left(U\left(k_{1}\right)\right.\right.$ $\left.\left.\times \cdots \times U\left(k_{p-1}\right)\right)\right), k=k_{1}+\cdots+k_{(p-1) / 2} . \quad$ Moreover i_{*} is defined by $i_{*}\left[M^{n}\right]$ $=\left[M \times Z_{p}, \mathbf{1} \times \sigma\right] \in \mathcal{O}_{n}\left(Z_{p}\right)$ where σ is the map of period p which interchanges elements of Z_{p}; ν is defined by sending $\left[M^{n}, T\right] \in \mathcal{O}_{n}\left(Z_{p}\right)$ to the normal bundle over the fixed point set of $T, \sum_{k \geqslant 0}\left[\nu_{k} \rightarrow F_{T}^{n-2 k}\right] \in \mathfrak{M}_{n}\left(Z_{p}\right)$, where $\nu_{k} \rightarrow F_{T}^{n-2 k}$ is the complex k-dimensional normal bundle over the union $F_{T}^{n-2 k}$ of the ($n-2 k$)-dimensional components of the fixed point set of T, and ∂ is defined by sending $\sum\left[V^{n-2 k}, g_{k}\right]=\sum\left[\xi_{k} \rightarrow V^{n-2 k}\right] \in \mathfrak{M}_{n}\left(Z_{p}\right)$ to the sphere bundles $\sum\left[S\left(\xi_{k}\right), \rho\right] \in \tilde{\Omega}_{n-1}\left(Z_{p}\right)$ where $\rho=\exp (2 \pi i / p)$ and $\xi_{k} \rightarrow V^{n-2 k}$ is the complex k-plane bundle classified by the map $g_{k}: V^{n-2 k}$ $\rightarrow B\left(U\left(k_{1}\right) \times \cdots \times U\left(k_{(p-1) / 2}\right)\right)$.

We also need several facts provided by Conner and Floyd in [3]:
For $X=B\left(U\left(k_{1}\right) \times \cdots \times U\left(k_{(p-1) / 2}\right)\right), \quad \Omega_{n}(X) \approx \sum_{j=0}^{n} H_{j}\left(X ; \Omega_{n-j}\right)$, [3, 15.2].

For a Ω-base $\left\{\left[S^{2 i-1}, \rho\right]\right\}$ of $\tilde{\Omega}_{*}\left(Z_{p}\right),[3,34.3],\left[S^{2 i-1}, \rho\right]$ has order p^{a+1} where $a(2 p-2)<2 i-1<(a+1)(2 p-2)$, [3, 36.1].

And if $2 i-1=a(2 p-2)+1$, then $p^{a}\left[S^{2 i-1}, \rho\right]=b\left[S^{1}, \rho\right] \cdot[C P(p-1)]^{a}$ where $b \not \equiv 0(\bmod p)$, [3, 36.2].

[^0]For $n \geqslant 0, \tilde{\Omega}_{2 n}\left(Z_{p}\right)=0$, [3, 34.2].
We may now show the following
Proposition. For $n \geqslant 0$,

$$
\mathcal{O}_{n}\left(Z_{p}\right) \approx \begin{cases}2 \text {-torsion } & \text { for } n \text { odd }, \\ \text { free }+2 \text {-torsion } & \text { for } n \text { even },\end{cases}
$$

where the 2-torsion part consists of elements of order two.
Proof. Let the homomorphism $j_{*}: \Omega_{n} \rightarrow \mathcal{O}_{n}\left(Z_{p}\right)$ be defined by $j_{*}\left[M^{n}\right]$ $=\left[M^{n}, 1\right] \in \mathcal{O}_{n}\left(Z_{p}\right)$. Then in the the following diagram

2-torsion $\quad \sum \sum H_{\text {even }}\left(B\left(U\left(k_{1}\right) \times \cdots \times U\left(k_{p-1 / 2}\right)\right) ; \Omega_{\text {odd }}\right) \approx 2$-torsion, where $k=k_{1}+\cdots+k_{(p-1) / 2}$, we see that $\mathcal{O}_{2 n+1}\left(Z_{p}\right) \approx 2$-torsion. The 2-torsion consists of elements of order two. For if we assume that $\mathcal{O}_{2 n+1}\left(Z_{p}\right)$ has elements of order 4 , then for some $\left[M^{2 n+1}\right] \in \Omega_{2 n+1}$ there is [$\left.N^{2 n+1}, T\right]$ $\in \mathcal{O}_{2 n+1}\left(Z_{p}\right)$ such that $i_{*}[M]=2[N, T]$. But in case it occurs, we may show that $[M]$ must vanish. To see this, we define $\varepsilon: \mathcal{O}_{2 n+1}\left(Z_{p}\right) \rightarrow \Omega_{2 n+1}$ by $\varepsilon[M, T]=[M]$ such that $\varepsilon j_{*}=1$. Then $\varepsilon i_{*}[M]=\varepsilon\left[M \times Z_{p}, 1 \times \sigma\right]=[M$ $\left.\times Z_{p}\right]=p[M]$. On the other hand, $\varepsilon i_{*}[M]=\varepsilon(2[N, T])=2 \varepsilon[N, T]=2[N]$ $=0$. We thus have $p[M]=0$, and so $[M]=0$.

By the same arguments we obtain $\mathcal{O}_{2 n}(Z) \approx$ free +2 -torsion, where the 2-torsion part also consists of order two. The assertion thus follows.
2. The generators of $\mathcal{O}_{n}\left(Z_{3}\right)$.

The explicit results of Thom groups for $n \leqslant 11$ are as follows.

$$
\begin{aligned}
& \Omega_{0}=Z, \Omega_{1}=\Omega_{2}=\Omega_{3}=0, \Omega_{4}=Z, \Omega_{5}=Z_{2}, \Omega_{6}=\Omega_{7}=0, \\
& \Omega_{8}=Z+Z, \Omega_{9}=Z_{2}+Z_{2}, \Omega_{10}=Z_{2}, \Omega_{11}=Z_{2}
\end{aligned}
$$

Let $P(m, n)=S^{m} \times C P(n) / \sim$ be the Dold manifold, where (x, z) $\sim(-x, \bar{z})$ for $x \in S^{m}$ and $z \in C P(n)$ with \bar{z} its conjugate. $P(m, n)$ is orientable if and only if $m \not \equiv n(\bmod 2)$ or $m=0$. The generators of Ω_{n} for $n \leqslant 11$ are:

$$
\begin{aligned}
& \Omega_{4}:[C P(2)], \Omega_{5}:[P(1,2)], \Omega_{8}:[C P(2) \times C P(2)],[C P(4)], \\
& \Omega_{9}:[P(1,4)],[C P(2) \times P(1,2)], \Omega_{10}:[P(1,2) \times P(1,2)], \\
& \Omega_{11}:[P(3,4)],[1, \text { Theorem 2]. }
\end{aligned}
$$

We compute the additive structure of $\mathcal{O}_{n}\left(Z_{3}\right)$ for $n \leqslant 11$ and obtain the explicit results in the following.

$$
\begin{aligned}
\mathcal{O}_{0}\left(Z_{3}\right) & =Z+Z, \mathcal{O}_{1}\left(Z_{3}\right)=0, \mathcal{O}_{2}\left(Z_{3}\right)=Z, \mathcal{O}_{3}\left(Z_{3}\right)=0, \mathcal{O}_{4}\left(Z_{3}\right)=Z+Z+Z+Z, \\
\mathcal{O}_{5}\left(Z_{3}\right) & =Z_{2}+Z_{2}, \mathcal{O}_{6}\left(Z_{3}\right)=Z+Z+Z+Z, \mathcal{O}_{7}\left(Z_{3}\right)=Z_{2}, \mathcal{O}_{8}\left(Z_{3}\right)=\underbrace{Z+\cdots+Z}_{11}, \\
\mathcal{O}_{9}\left(Z_{3}\right) & =\underbrace{Z_{2}+\cdots+Z_{2}}_{6}, \mathcal{O}_{10}\left(Z_{3}\right)=(\underbrace{Z+\cdots+Z}_{12})+Z_{2}+Z_{2}, \mathcal{O}_{11}\left(Z_{3}\right) \\
& =\underbrace{Z_{2}+\cdots+Z_{2}}_{7} .
\end{aligned}
$$

The generators of $\mathcal{O}_{n}\left(Z_{3}\right)$ for $n \leqslant 7$ are as follows.
(0) It is easy to see that $\mathcal{O}_{0}\left(Z_{3}\right)=j_{*} \Omega_{0}+i_{*} \Omega_{0}$ where j_{*} and i_{*} are defined by $j_{*}[M]=[M, 1]$ and $i_{*}[M]=\left[M \times Z_{3}, 1 \times \sigma\right]$ for $[M] \in \Omega_{0}$. The map σ is a map of period 3 which interchanges elements of Z_{3}.
(1) $\mathcal{O}_{1}\left(Z_{3}\right)=0$.
(2) $\mathcal{O}_{2}\left(Z_{3}\right)$ is generated by $[H, \tilde{T}]$ where H is an oriented differentiable 2-manifold with the fixed point set $F_{\tilde{T}}$ consisting of three points. Such a manifold can be constructed as follows. Define a curve $H \subset C P(2)$ by $H=\left\{\left[z_{0}, z_{1}, z_{2}\right] \mid z_{0}^{3}+z_{1}^{3}+z_{2}^{3}=0\right\}$ with an action \tilde{T} given by $\tilde{T}\left(\left[z_{0}, z_{1}, z_{2}\right]\right)$ $=\left[z_{0}, z_{1}, \rho z_{2}\right], \rho=\exp (2 \pi i / 3)$. Then $F_{\tilde{T}}=\left\{[-1,1,0],[-1, \rho, 0],\left[-1, \rho^{2}\right.\right.$, $0]\}$, [2, p. 7]. This manifold H is a non-singular elliptic curve. In the following diagram

We see that $[H, \tilde{T}], F_{\tilde{T}}=\{3$ points $\} \xrightarrow{\nu}\left[\nu_{1} \rightarrow F_{\tilde{T}}\right] \xrightarrow{\partial} 3\left[S^{1}, \rho\right]=0$.
(3) $\mathcal{O}_{3}\left(Z_{3}\right)=0$.
(4) $\mathcal{O}_{4}\left(Z_{3}\right)$ is generated by $[C P(2), 1],\left[C P(2) \times Z_{3}, 1 \times \sigma\right],\left[C P(2), T_{0}\right]$ and $\left[C P(2), T_{1}\right]$ where $T_{0}\left(\left[z_{0}, z_{1}, z_{2}\right]\right)=\left[\rho z_{0}, z_{1}, z_{2}\right]$ and $T_{1}\left(\left[z_{0}, z_{1}, z_{2}\right]\right)=\left[\rho z_{0}\right.$, $\left.\rho^{2} z_{1}, z_{2}\right]$ for $\left[z_{0}, z_{1}, z_{2}\right] \in C P(2)$. This may be seen in the following diagram.

i) $\quad[C P(2)] \xrightarrow{j_{*}}[C P(2), 1] \xrightarrow{\nu}\left[\nu_{0} \rightarrow C P(2)\right] \xrightarrow{\partial} 0$.
ii) $[C P(2)] \xrightarrow{i_{*}}\left[C P(2) \times Z_{3}, 1 \times \sigma\right] \xrightarrow{\nu} 0$. Here notice that $\left[C P(2) \times Z_{3}, 1 \times \sigma\right]$ is fixed point free.
iii) $\quad\left[C P(2), T_{0}\right], F_{T}=C P(1) \cup\{$ a point $\} \xrightarrow{\nu}\left[\nu_{1} \rightarrow C P(1)\right]+\left[\varepsilon^{4} \rightarrow *\right] \xrightarrow{\partial}$ $-\left[S^{3}, \rho\right]+\left[S^{3}, \rho\right]=0$, where $\varepsilon^{4} \rightarrow *$ is the trivial 4-plane bundle over the point $*$.
iv) $\left[C P(2), T_{1}\right], F_{T_{1}}=\{3$ points $\} \xrightarrow{\nu} 3\left[\varepsilon^{4} \rightarrow *\right] \xrightarrow{\partial} 3\left[S^{3}, \rho\right]=0$.
(5) $\mathcal{O}_{5}\left(Z_{3}\right)$ is generated by $[P(1,2), 1]$ and $\left[P(1,2) \times Z_{3}, 1 \times \sigma\right]$.

In the diagram

i) $[P(1,2)] \xrightarrow{j_{*}}[P(1,2), 1] \xrightarrow{\nu}\left[\nu_{0} \rightarrow P(1,2)\right] \xrightarrow{\partial} 0$.
ii) $[P(1,2)] \xrightarrow{i_{*}}\left[P(1,2) \times Z_{3}, 1 \times \sigma\right] \xrightarrow{\nu} 0$.
(6) $\mathcal{O}_{6}\left(Z_{3}\right)$ is generated by $\left[C P(3), T_{0} \mid T_{0}\left(\left[z_{0}, z_{1}, z_{2}, z_{3}\right]\right)=\left[\rho z_{0}, z_{1}, z_{2}, z_{3}\right]\right]$, $\left[{ }^{3} M^{8}, T \mid F_{T}=C P(2) \cup\{3\right.$ points $\left.\}\right]$, ${ }^{3} N^{6}, T^{\prime} \mid F_{T^{\prime}}=C P(1) \cup\{2$ points $\left.\}\right]$ and $[H, \tilde{T}] \cdot\left[C P(2), T_{1}\right]$ where $[H, \tilde{T}]$ is the 2-manifold stated in (2) and $T_{1}\left(\left[z_{0}\right.\right.$, $\left.\left.z_{1}, z_{2}\right]\right)=\left[\rho z_{0}, \rho^{2} z_{1}, z_{2}\right]$ for $\left[z_{0}, z_{1}, z_{2}\right] \in C P(2)$.

For $\Omega_{8}=0, \tilde{\Omega}_{\mathrm{b}}\left(Z_{3}\right)=\left\{\left[S^{5}, \rho\right]\right\} \approx Z_{9}$ and

$$
\begin{aligned}
\mathfrak{M}_{6}\left(Z_{3}\right)= & \Omega_{4}(B U(1)) \approx H_{4}\left(B U(1) ; \Omega_{0}\right)+H_{0}\left(B U(1) ; \Omega_{4}\right) \approx Z+Z \\
& + \\
& \left.\Omega_{2}(B U(2)) \approx Z \quad[\text { Cases : i), ii), iii) and iv })\right] \\
& + \\
& \Omega_{0}(B U(3)) \approx Z
\end{aligned}
$$

We have
i) $\left[C P(3), T_{0}\right], F_{T_{0}}=C P(2) \cup\{$ a point $\} \xrightarrow{\nu}\left[\nu_{1} \rightarrow C P(2)\right]+\left[\varepsilon^{6} \rightarrow *\right] \xrightarrow{\partial} 0$.
ii) There is $\left[M^{8}, T\right]$ such that $F_{T}=C P(2) \cup\{3$ points $\}$ with trivial normal bundle. $\xrightarrow{\nu}-\left[\varepsilon^{2} \rightarrow C P(2)\right]+3\left[\varepsilon^{6} \rightarrow *\right] \xrightarrow{\partial} 0$. For $\left[\varepsilon^{2} \rightarrow C P(2)\right]$

$$
\xrightarrow{\partial}\left[C P(2) \times S^{1}, 1 \times \rho\right]=[C P(2)] \cdot\left[S^{1}, \rho\right]=3\left[S^{5}, \rho\right] .
$$

iii) There is $\left[N^{6}, T^{\prime}\right]$ such that $F_{T^{\prime}}=C P(1) \cup\{2$ points $\}$ with $\nu\left[N^{6}, T^{\prime}\right]$ $=\left[i^{*} \gamma_{1} \oplus \varepsilon^{2} \rightarrow C P(1)\right]+2\left[\varepsilon^{6} \rightarrow *\right]$ where $i^{*} \gamma_{1} \oplus \varepsilon^{2}$ is obtained in the following:

Then $\partial \nu\left[N^{6}, T^{\prime}\right]=0$. For consider $\left[C P(2), T_{0}\right], T_{0}\left(\left[z_{0}, z_{1}, z_{2}\right]\right)=\left[\rho z_{0}, z_{1}, z_{2}\right]$, we then have $\partial I_{*} \nu\left[C P(2), T_{0}\right]=\left[S^{1}, \rho\right] \cdot[C P(2)]=3\left[S^{\triangleright}, \rho\right]$ where I_{*} : $\Omega_{n-2 k}(B U(k)) \rightarrow \Omega_{n-2 k}(B U(k+1))$ is a homomorphism induced by the homomorphism $U(k) \rightarrow U(k+1)$ sending the matrix α into $\left(\begin{array}{ll}1 & 0 \\ 0 & \alpha\end{array}\right), \quad[3$, 38.6]. But $\partial I_{*} \nu\left[C P(2), T_{0}\right]=\partial\left\{\left[\nu_{1} \oplus \varepsilon^{2} \rightarrow C P(1)\right]+\left[\varepsilon^{6} \rightarrow *\right]\right\}=\partial\left[\nu_{1} \oplus \varepsilon^{2} \rightarrow C P(1)\right]$ $+\left[S^{5}, \rho\right]$ which is $3\left[S^{5}, \rho\right]$. Hence $\partial\left[\nu_{1} \oplus \varepsilon^{2} \rightarrow C P(1)\right]=2\left[S^{b}, \rho\right]$ and ν_{1} is conjugate to the bundle $i^{*} \gamma_{1}$.
iv) $[H, \tilde{T}] \cdot\left[C P(2), T_{1}\right]=\left[H \times C P(2), \tilde{T} \times T_{1}\right], F_{\widetilde{T} \times T_{1}}=\{3$ pts. $\} \times\{3$ pts. $\} \xrightarrow{\nu}$ $9\left[\varepsilon^{6} \rightarrow *\right] \xrightarrow{\partial} 9\left[S^{5}, \rho\right]=0$.
(7) $\mathcal{O}_{7}\left(Z_{3}\right)$ is generated by $\left[{ }^{3} V^{7}, T \mid F_{T}=P(1,2)\right.$ with trivial normal
bundle].
Since $\Omega_{7}=\tilde{\Omega}_{6}\left(Z_{3}\right)=0$ and $\mathfrak{M}_{7}\left(Z_{3}\right)=\Omega_{5}(B U(1)) \approx H_{0}\left(B U(1) ; \Omega_{5}\right) \approx Z_{2}$, $\left[V^{7}, T\right], F_{T}=P(1,2) \xrightarrow{\nu}\left[\varepsilon^{2} \rightarrow P(1,2)\right] \xrightarrow{\partial}\left[P(1,2) \times S^{1}, 1 \times \rho\right]=0$. There is then $\left(W^{7}, T^{\prime}\right)$, fixed point free, with $\partial\left(W^{7}, T^{\prime}\right)=\left(P(1,2) \times S^{1}, 1 \times \rho\right)$. We thus see that the generator [$\left.V^{7}, T\right]$ is of the form $\left[\left(P(1,2) \times D^{2}\right) \cup W^{7}\right.$, $\left.1 \times \rho \cup T^{\prime}\right]$ where the two copies of $P(1,2) \times S^{1}$ are identified.
3. The Ω-module structure of $\mathcal{O}_{*}\left(\boldsymbol{Z}_{3}\right)$. In [5, §5] we have determined the Ω-module structure of $\mathcal{O}_{*}\left(Z_{3}\right)$. The result is as follows:

$$
\mathcal{O}_{*}\left(Z_{3}\right) \approx \sum_{k \geqslant 0} \Omega \cdot \mu_{k} \oplus_{l_{0}, \cdots, l_{j} \geqslant 0} \Omega \cdot \Gamma^{l_{0}}\left(\sigma_{1}^{l_{1}} \cdots \sigma_{j}^{l_{j}}\right)
$$

as free Ω-module, where $\sum \Omega \cdot \mu_{k}$ and $\sum \Omega \Gamma^{l_{0}}\left(\sigma_{1}^{l_{1}} \cdots \sigma_{j}^{l_{j}}\right)$ are free Ω modules generated by μ_{k} and $\Gamma^{l_{0}}\left(\sigma_{1}^{L_{1}} \cdots \sigma_{j}^{l_{j}}\right)$ respectively which we shall explane in the following. In the exact sequence

$$
0 \longrightarrow \Omega_{*} \xrightarrow{i_{*}} \mathcal{O}_{*}\left(Z_{3}\right) \xrightarrow{\nu} \mathfrak{M}_{*}\left(Z_{3}\right) \xrightarrow{\partial} \tilde{\Omega}_{*}\left(Z_{3}\right) \longrightarrow 0,
$$

there are closed oriented manifolds $M^{4 k}, k=1,2, \cdots$, and $\beta_{k} \in \mathfrak{M}_{*}\left(Z_{3}\right)$ such that $\beta_{k}=3 \theta_{0}^{k}+\left[M^{4}\right] \theta_{0}^{k-2}+\left[M^{8}\right] \theta_{0}^{k-4}+\cdots,[5, \S 5]$ where $\theta_{0}=\left[\varepsilon^{2} \rightarrow *\right]$ and that $\partial\left(\beta_{k}\right)=0$ in $\tilde{\Omega}_{*}\left(Z_{3}\right),[3,46.1]$. The generator μ_{k} is taken to be such an element of $\mathcal{O}_{*}\left(Z_{3}\right)$ that $\nu\left(\mu_{k}\right)=\beta_{k}$ for each $k \geqslant 1$ and $\mu_{0}=\left[Z_{3}, \sigma\right]$.

Let $\Omega_{*}\left(S^{1}\right)$ be the bordism group of free S^{1}-action and let $\mathcal{O}_{*}\left(S^{1}\right)$ and $\mathfrak{M}_{*}\left(S^{1}\right)$ be the bordism groups of semi-free S^{1}-actions which are just formed by replacing Z_{3}-actions by S^{1}-actions in $\Omega_{*}\left(Z_{3}\right), \mathcal{O}_{*}\left(Z_{3}\right)$ and $\mathfrak{M}_{*}\left(Z_{3}\right)$ respectively. We shall use the Ω-module structure of $O_{*}\left(S^{1}\right)$ in that of $\mathcal{O}_{*}\left(Z_{3}\right)$, so consider now the diagram

where λ is the homomorphism defined by sending an S^{1}-action $[M, \tau]$ to a Z_{3}-action $[M, T]$; $\tilde{\nu}$ and $\tilde{\partial}$ are the homomorphisms quite analogous to ν and ∂. The first sequence is exact and $\mathfrak{M}_{*}\left(S^{1}\right)=\mathfrak{M}_{*}\left(Z_{3}\right)$, [4]. For any element $\left[M^{n}, \tau\right] \in \mathcal{O}_{*}\left(S^{1}\right)$, consider $\left(M \times D^{2}, 1 \times \tau_{0}\right)$ and $\left(M \times D^{2}, \tau \times \tau_{0}\right)$ where τ_{0} is the usual S^{1}-action on D^{2}. Then $\partial\left(M \times D^{2}, 1 \times \tau_{0}\right)=\left(M \times S^{1}\right.$, $\left.1 \times \tau_{0}\right)$ and $\partial\left(M \times D^{2}, \tau \times \tau_{0}\right)=\left(M \times S^{1}, \tau \times \tau_{0}\right)$ are equivariantly diffeomorphic by an equivariant diffeomorphism $\varphi: M \times S^{1} \rightarrow M \times S^{1}$ defined by $\varphi(x, t)=(t(x), t)$. Form $\left(M^{n+2}, \tau^{\prime}\right)$ from $\left(M \times D^{2}, 1 \times \tau_{0}\right) \cup\left(-M \times D^{2}, \tau \times \tau_{0}\right)$ by identifying ($M \times S^{1}, 1 \times \tau_{0}$) and ($M \times S^{1}, \tau \times \tau_{0}$) via φ. The Ω-map Γ : $\mathcal{O}_{n}\left(S^{1}\right) \rightarrow \mathcal{O}_{n+2}\left(S^{1}\right)$ is to be defined by $\Gamma\left[M^{n}, \tau\right]=\left[M^{n+2}, \tau^{\prime}\right]$, and σ_{i} $=[C P(i+1), \tau], \tau\left(t,\left[z_{0}, z_{1}, \cdots, z_{i+1}\right]\right)=\left[t z_{0}, z_{1}, \cdots, z_{i+1}\right], t \in S^{1}$. We then have

$$
\mathcal{O}_{*}\left(S^{1}\right) \approx \sum \Omega \cdot \Gamma^{l_{0}}\left(\sigma_{1}^{l_{1}} \cdots \sigma_{j}^{l_{j}}\right)
$$

as free Ω-module, [4]. Here $\tilde{\nu}\left(\sigma_{i}\right)=\theta_{i}-\theta_{0}^{i+1}$ where $\theta_{i}=[\bar{\eta} \rightarrow C P(i)], \bar{\eta}$ $\rightarrow C P(i)$ is the complex line bundle over $C P(i)$ induced from the universal
bundle over $B U(1)$ by the inclusion $i: C P(i) \rightarrow B U(1)$. We shall express $\mathcal{O}_{n}\left(Z_{3}\right)$ for $n \leqslant 7$ in the notations given above. With this expression, we may have a clearer sight of the Ω-module structure of $\mathcal{O}_{*}\left(Z_{3}\right)$ and its connection with that studied in § 2.
(0) $\mathcal{O}_{0}\left(Z_{3}\right) \approx \Omega_{0} \cdot 1+\Omega_{0} \cdot \mu_{0}$.
(1) $\mathcal{O}_{1}\left(Z_{3}\right)=0$.
(2) $\mathcal{O}_{2}\left(Z_{3}\right) \approx \Omega_{0} \cdot \mu_{1}$.
(3) $\mathcal{O}_{3}\left(Z_{3}\right)=0$.
(4) $\mathcal{O}_{4}\left(Z_{3}\right) \approx \Omega_{4} \cdot 1+\Omega_{4} \cdot \mu_{0}+\Omega_{0} \cdot \sigma_{1}+\Omega_{0} \cdot \mu_{2}$.
(5) $\mathcal{O}_{5}\left(Z_{3}\right) \approx \Omega_{5} \cdot 1+\Omega_{5} \cdot \mu_{0}$.
(6) $\mathcal{O}_{6}\left(Z_{3}\right) \approx \Omega_{0} \cdot \sigma_{2}+\Omega_{0} \cdot \mu_{3}+\Omega_{0} \cdot \Gamma\left(\sigma_{1}\right)+\Omega_{4} \cdot \mu_{1}$.
(7) $\mathcal{O}_{7}\left(Z_{3}\right) \approx \Omega_{5} \cdot \mu_{1}$.

References

[1] Adachi, M.: On the groups of cobordism Ω^{k}. Nagoya Math. J., 13, 135156 (1958).
[2] Conner, P. E.: Seminar on Periodic Maps. Springer-Verlag (1967).
[3] Conner, P. E., and E. E. Floyd: Differentiable Periodic Maps. SpringerVerlag (1964).
[4] Shimada, N., and C.-M. Wu: Bordism algebra of semi-free S^{1}-actions (to appear).
[5] Wu, C.-M.: Bordism and maps of odd prime period (to appear in Osaka J. Math.).

[^0]: *) During the preparation of this paper, the author was a Fellow of the United Board for Christian Higher Education in Asia.

