82. On Integral Representation Involving Meijer's G-Function

By R. S. Dahiya
Department of Mathematics, Iowa State University
(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1971)

The object of the present paper is to study the following integral relation of Meijer's G-function:

$$
\begin{align*}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{y^{2 u-1} x^{2 v-1}\left(x^{2}+y^{2}\right)}{\left(a^{2} y^{2}+b^{2} x^{2}\right)^{u+v}} G_{p, q}^{m, n}\left(\left.\frac{a x^{2} y^{2}\left(x^{2}+y^{2}\right)}{\left(a^{2} y^{2}+b^{2} x^{2}\right)^{2}} \right\rvert\, \begin{array}{l}
a_{p} \\
b_{q}
\end{array}\right) f\left(x^{2}+y^{2}\right) d x d y \\
& \quad=\frac{\sqrt{\pi} 2^{-1-u-v}}{a^{2 u} b^{2 v}} \int_{0}^{\infty} G_{p+2, q+2}^{m, n+2}\left(\frac{\alpha z}{4} \left\lvert\, \begin{array}{l}
1-u, 1-v, a_{p} \\
b_{q}, 1-\frac{u}{2}-\frac{v}{2}, \frac{1}{2}-\frac{u}{2}-\frac{v}{2}
\end{array}\right.\right) f(z) d z, \tag{1}
\end{align*}
$$

where $|\arg \alpha|<(m+n-1 / 2 p-1 / 2 q) \pi, R(u, v)>0 ; f(z)=0\left(z^{-s}\right)$ for large z and $f(z)=0\left(z^{\varepsilon-1 / 2}\right)$ for small $z ; \delta>0, \varepsilon>0$.

Meijer's G-function is defined [1] by a Mellin-Barnes type integral :

$$
G_{p, q}^{m, n}\left(z \left\lvert\, \begin{array}{c}
a_{p} \\
b_{q}
\end{array}\right.\right)=G_{p, q}^{m, n}\left(z \left\lvert\, \begin{array}{c}
a_{1}, \cdots, a_{p} \\
b_{1}, \cdots, b_{q}
\end{array}\right.\right)
$$

$$
\begin{equation*}
=\frac{1}{2 \pi i} \int_{L} \frac{\Gamma\left[\left(b_{m}\right)-s\right] \Gamma\left[1-\left(a_{n}\right)+s\right]}{\Gamma\left[1-\left(b_{m+1}, q\right)+s\right] \Gamma\left[\left(a_{n+1}, p\right)-s\right]} z^{s} d z, \tag{2}
\end{equation*}
$$

where m, n, p, q are integers with $q \geq 1 ; 0 \leq n \leq p, 0 \leq m \leq q$, the parameters a_{j} and b_{j}, are such that no poles of $\Gamma\left(b_{j}-s\right), j=1,2, \cdots, m$ coincides with any pole of $\Gamma\left(1-a_{j}+s\right) ; j=1,2, \cdots, n$. The poles of integrand must be simple and those of $\Gamma\left(b_{j}-s\right) ; j=1,2, \cdots, m$ lie on one side of the contour L and those of $\Gamma\left(1-a_{j}+s\right) ; j=1,2, \cdots, n$ must lie on the other side. The contour L runs from $-i^{\infty}$ to i^{∞}. Throughout the paper the above conditions shall be retained. The integral converges if $p+q<2(m+n)$ and $|\arg z|<(m+n-1 / 2 p-1 / 2 q) \pi$.

Then, by using the formula ([2], p. 377):

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{\sin ^{2 u-1} \theta \cos ^{2 v-1} \theta}{\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)^{u+v}} d \theta=\frac{1}{2 a^{2 u} b^{2 v}} \cdot \frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)}, R(u, v)>0 \tag{3}
\end{equation*}
$$

we obtain our first result in the form

$$
\int_{0}^{\pi / 2} \frac{\sin ^{2 u-1} \theta \cos ^{2 v-1} \theta}{\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)^{u+v}} G_{p, q}^{m, n}\left(\left.\frac{\alpha z \sin ^{2} \theta \cos ^{2} \theta}{\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)^{2}} \right\rvert\, \begin{array}{l}
a_{p} \\
b_{q}
\end{array}\right) d \theta
$$

$$
=\frac{\sqrt{\pi} 2^{-u-v}}{a^{2 u} b^{2 v}} G_{p+2, q+2}^{m, n+2}\left(\frac{\alpha z}{4} \left\lvert\, \begin{array}{l}
1-u, 1-v, a_{p} \tag{4}\\
b_{q}, 1-\frac{u}{2}-\frac{v}{2}, \frac{1}{2}-\frac{u}{2}-\frac{v}{2}
\end{array}\right.\right),
$$

provided $R(u)>0, R(v)>0, p+q<2(m+n)$ and $|\arg z|<(m+n-1 / 2 p$ $-1 / 2 q) \pi$.

To prove (4), we substitute the contour integral (2) for the G-function and change the order of integration; then L.H.S. of (4) equals

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{L} \frac{\Gamma\left[\left(b_{m}\right)-s\right] \Gamma\left[1-\left(a_{n}\right)+s\right) \alpha^{s} z^{s}}{\Gamma\left[1-\left(b_{m+1}, q\right)+s\right] \Gamma\left[\left(a_{n+1}, p\right)-s\right]} \\
& \quad \times \int_{0}^{\pi / 2} \frac{\sin ^{2 u+2 s-1} \theta \cos ^{2 v+2 s-1} \theta}{\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)^{u+v+2 s}} d \theta d s \tag{5}
\end{align*}
$$

Now evaluating the inner integral with the help of (3) and using the definition (2) of G-function, we obtain the required result (4).

On putting $z=r^{2}$ in (4), and then multiplying both sides by $r f\left(r^{2}\right)$ and integrating between the limits $(0, \infty)$, we have

$$
\begin{align*}
& \int_{0}^{\infty} r f\left(r^{2}\right) d r \int_{0}^{\pi / 2} \frac{\sin ^{2 u-1} \theta \cos ^{2 v-1} \theta}{\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)^{u+v}} \\
& \quad \times G_{p, q}^{m, n}\left(\left.\frac{\alpha r^{2} \sin ^{2} \theta \cos ^{2} \theta}{\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)^{2}}\right|_{a_{p}} ^{b_{p}} \begin{array}{l}
\text { a }
\end{array}\right) d \theta \tag{6}\\
& =\frac{\sqrt{\pi} 2^{-u-v}}{a^{2 u} b^{2 v}} \int_{0}^{\infty} r f\left(r^{2}\right) G_{p+2, q+2}^{m, n+2}\left(\frac{\alpha r^{2}}{4} \left\lvert\, \begin{array}{l}
1-u, 1-v, a_{p} \\
\left.b_{q}, 1-\frac{u}{2}-\frac{v}{2}, \frac{1}{2}-\frac{u}{2}-\frac{v}{2}\right) d r .
\end{array} .\right.\right.
\end{align*}
$$

Now on putting $x=r \cos \theta, y=r \sin \theta$ and after some simplification, we get the required result (1).

For applications, it is shown that the double integrals can be evaluated easily by choosing $f(z)$ in convenient form. That means, either the Right hand side integral of (1) is known after choosing $f(z)$ (see [2]) or can be evaluated.
Suppose $f(z)=z^{\rho} e^{-z} L_{k}^{\sigma}(z),\left(L_{k}^{q}(z)\right.$: a Laguerre polynomial).
Then we have from relation (1):

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{y^{2 u-1} x^{2 v-1}\left(x^{2}+y^{2}\right)^{\rho+1}}{\left(a^{2} y^{2}+b^{2} x^{2}\right)^{u+v}} e^{-x^{2-y^{2}}} L_{k}^{\sigma}\left(x^{2}+y^{2}\right) G_{p, q}^{m, n} \\
& \quad \times\left(\left.\frac{\alpha x^{2} y^{2}\left(x^{2}+y^{2}\right)}{\left(a^{2} y^{2}+b^{2} x^{2}\right)^{2}} \right\rvert\, \begin{array}{l}
a_{p} \\
b_{q}
\end{array}\right) d x d y=\frac{\sqrt{\pi} 2^{-1-u-v}}{a^{2 u} b^{2 v}} \\
& \quad \times \int_{0}^{\infty} G_{p+2, q+2}^{m, n}\left(\frac{\alpha z}{4} \left\lvert\, \begin{array}{l}
1-u, 1-v, a_{p} \\
\left.b_{q}, 1-\frac{u}{2}-\frac{v}{2}, \frac{1}{2}-\frac{u}{2}-\frac{v}{2}\right) z^{\rho} e^{-z} L_{k}^{\sigma}(z) d z .
\end{array} .\right.\right.
\end{aligned}
$$

By evaluating the integral on the right (see [2]), we get

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{y^{2 u-1} x^{2 v-1}\left(x^{2}+y^{2}\right)^{\rho+1}}{\left(a^{2} y^{2}+b^{2} x^{2}\right)^{u+v}} e^{-x^{2}-y^{2}} L_{k}^{\sigma}\left(x^{2}+y^{2}\right) G_{p, q}^{m, n}
$$

$$
\begin{equation*}
\times\left(\left.\frac{\alpha x^{2} y^{2}\left(x^{2}+y^{2}\right)}{\left(a^{2} y^{2}+b^{2} x^{2}\right)^{2}}\right|_{b_{q}} ^{a_{p}}\right) d x d y \tag{8}
\end{equation*}
$$

$$
=\frac{(-1)^{k}}{k!} \frac{\sqrt{\pi} 2^{-1-u-v}}{a^{2 u} b^{2 v}} G_{p+4, q+3}^{m, n+4}\left(\frac{\alpha}{4} \left\lvert\, \begin{array}{l}
-\rho, \sigma-\rho, 1-u, 1-v, a_{p} \\
b_{q}, 1-\frac{u}{2}-\frac{v}{2}, \frac{1}{2}-\frac{u}{2}-\frac{v}{2}
\end{array}\right.\right),
$$

where $R\left(\rho+1+b_{j}\right)>-1, j=1,2, \cdots, m ; p+q<2(m+n)$,

$$
|\arg \alpha|<\left(m+n-\frac{1}{2} \rho-\frac{1}{2} q\right) \pi
$$

In a similar fashion, many more interesting results could be obtained.

References

[1] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi: Higher Transcendental Functions, Vol.1. McGraw-Hill, New York, pp. 207, 209, 215 (1953).
[2] I. S. Gradshteyn and I. M. Ryzhik: Table of Integrals; Series, and Products (English Edition) (1965).

