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109. An Analogue of the Paley.Wiener Theorem
for the Euclidean Motion Group

By Keisaku KUMAHARA*) and Kiyosato OKAMOTO**)

(Comm. by Kinjir5 KUNUGI, M. .A., May 12, 1971)

1. Introduction. The purpose of this paper is to prove an ana-
logue of the Paley-Wiener theorem for the group G of the motions of
the n-dimensional euclidean space.

Let G be the set of all equivalence classes of irreducible unitary
representations of G. Let L2(G) (resp. L2()) be the Hilbert space of
all square integrable functions on G (resp. ) with respect to the Haar
measure (resp. the Plancherel measure). Then the Plncherel theorem
states that the Fourier transform gives an isometry of L2(G) onto L2(G)
(see 2).

Let C:(G) be the space of all infinitely differentiable functions with
compact support on G. By an analogue of the Paley-Wiener theorem
we mean the characterization of the image of C:(G) by the Fourier
transform.

As a number of articles ([1], [2], [4], [7]-[9] and etc.) indicate, in
order to attack the problem one has to consider the Fourier-Laplace
transforms of C:(G) which are (operator-valued) entire analytic func-
tions "of exponential type" on a certain complex manifold. In general,

is not a C manifold but the space of all orbits in a rel analytic
manifold by actions of the "Weyl group" which gives equivalence
relations. The Fourier-Laplace transform Tx of an element f of C:(G)
is defined on the "complexification" of this real analytic manifold and
satisfies certain functional equations derived from the actions of the
Weyl group.

Detailed proofs will appear elsewhere.
2. Preliminaries. Let G be the group of motions of n-dimen-

sional euclidean space R. Then G is realized as the group of (n + 1)

(k x)(keSO(n),xR).,.\

Let K and(n + 1)-matrices of the form
0 1

H be the closed subgroups of the elements {: 0} (keSO(n))and1’"i1 x) (xe R), respectively. Then H is an abelian’ normal subgroup
0 1’.

of G and G is the semidirect of H and K. We normalize the Harr
measure dg on G such that dg- dxdk, where dx--- (2zr)-’/dx. dx
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and d/c is the normalized Haar measure on K. Let ----L(K) be the
Hilbert space of all square integrable functions on K. We denote by
B() the Banach space of all bounded linear operators on .

If G is a subgroup of G, we denote by the set of all equivalence
classes of irreducible unitary representations of G. For an irreducible
unitary representation a of G, we denote by [a] the equivalence class
which contains a. Denote by (,) the euclidean inner product on R.
Then we can identify with R so that the value of e at x e H is

e,. For simplicity, we identify k SO(n) with(- 0e- K and x e R
0 1/

with (1 x e H. Because H is normal, K acts on H, and therefore on
0 1/

naturally" (k$, x}--($, k-x}. Let K be the isotropy subgroup of K
at $ e . If $0, K is isomorphic to SO(n-l).

The irreducible unitary representations of G were enumerated and
constructed by G. W. Mackey [6] and S. It5 [5] as ollows. We fix
$ e . Let Z and d be the character and the degree of [a] e , re-
spectively. Let R be the right regular representation of K. If a(k)
=(z(k))(li, ]d), we put

P-dez(m)Rdem
and

P-d (m)Rdm,

where gm is he normalized Haar measure on K. hen P and P are
boh orhogonal rojeetions of . Pu --P and =P. We
denote by U the unitary representation of induced by , i.e. for

g=0 eG

(UF)(u)-e<,-">F(k-u), (F e , u e K).
The subspaces (lid,) are invariant under U and the representa-
tions of G induced on under U are equivalent for all 1id. We
fix one of them nd denote it by U,. Two representations U, and
U’’ are equivalent if and only if there exists an element k e K such
that ’=k and [a] [a’] where a’(m) a’(m-), (me K).

First we assume that $0. Then U, is irreducible and every
infinite dimensional irreducible unitary representation is equivalent to
one of U,, ($0 [a] e ). Since-e nd-=lOdi, we
have

U (U,...U,). (2.1)
d times

Next we assume that =0. Then U, is reducible and K--K.
For any irreducible unitary representation a of K we define a finite
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dimensional irreducible unitary representation U o G by U=a(k)
where g-( xl eG. Then we have U,U...U and U

\0
de tmes- U,. Moreover every finite dimensional irreducible unitary re-

presentation of G is equivalent to one of U
We denote by ().(resp. ()0) the set o all equivalence classes o

infinite (resp. finite) dimensional irreducible unitary representations
of G.

Let R+ be the set of all positive numbers and let M be the subgroup

of the elements m (m SO(n-1)). Then for any e of the
0

form t(a, O, ..., 0), a e R+, we have K--M. It follows from the above
results that (). can be identified with R+ X. It can be proved that
the Plancherel measure of ()0 is zero and the Plancherel measure on
() is explicitly expressed as (2/2/F(2/n))a-lda@d. For any

f e CT(G), we put
,aT,($, a) f(g)U dg

JG
For t(a, O, ..., 0), (a e R+), we write briefly T($, a) Tz(a, a).
Then the following Plancherel formula holds"

2[f(g), dg- 2F(n/2)
dR+ T(a, a)a-da, (2.2)

where 112 denotes the Hilbert-Schmidt norm.
For any f e C(G) we put

T()=f(g)Udg.
The space, on which Tx(, a) operates, depends not only on a but also
on $. However Tz() is an operator on a fixed Hilbert space , so that
we can consider the B()-valued function T. We shall call Tz the
Fourier transform of f. As above we write T()=T](a) for

t(a, 0, ,0), (a e R+). Then it follows from (2.1) and (2.2) that
2

/2) +1] T(a)]la-da.f(g) dg
2/F(n

3. Definition and some properties of the ourier,Laplace trans.

form. For each e (C=) we define a bounded representation of
G on by

(UF)(u)= e<,=->F(k-u), (F e , u e K),

where g=
0 1 " PoranyfC2(G),u

(=f(ugg.
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Then T is a B()-valued function on /. We call T the Fourier-
Laplace transform of f.

Since K is compact, or each f C:(G) there exists a positive

number a such that supp (f) {(/ X) eG;Ix.<a,le K} We denote

by r the greatest lower bound of such a’s. Throughout this section we
assume that f e C:(G) such that ra or a fixed a e R/.

Lemma 1 There exists a constan C>__O depending only on f such
tha Tx()II<=C exp alIm

This lemma is easily verified using the Schwarz’s inequality.
A B()-valued unction T on / is called entire analytic if it is

analytic at each point of/ (for the definition of a Banach space valued
analytic unction, see [3(a)]). Then it is easy to see that T is entire
analytic and that, or any e H, T]() leaves the space C(K) invariant.

We denote by (resp./) the representation of K on C(G) defined
by

(tc)f(g) f(k-g) (resp. /(k)f(g) f(gk))
or k e K and g e G. We also denote by 2 and / the corresponding
representations of the universal enveloping algebra of the Lie algebra
of K. We denote by A the Casimir operator of K (In case n--2, we

put A---X for a non-zero X e ). For any polynomial function p on
/, we define a differential operator p(D) on H by p(D)=p(1/i.3/3x,
., 1/i. 3 / 3x). The following lemma is not difficult to prove but plays

an important role.
Lemma 2. 1) For any non-negative integers and m we have

2) For any K-invariant polynomial function p on I, we have
p()TI()--T.(,)x(), ( e ft), where p*()--p(--).

From Lemma 1 and Lemma 2 we have
Proposition 1. For any polynomial function p on I2I and for any

non-negative integers and m, there exists a constant C, such that

Finally from the definition of T we have the following proposi-
tion (the functional equations for T).

Proposition 2. Tx(k)-RTy()R; ( e fI, k K).
4. The analogue of the Paley.Wiener theorem.
Theorem. A B()-valued function T on ft is the Fourier trans-

form of f e C:(G) such that rx<=a(a)O) if and only if it satisfies the
following conditions"

( I ) T can be extended to an entire analytic function on fiI.
(II) For any e I, T() leaves the space C(K) invariant.

Moreover for any polynomial function p on I and for any non-nega-
tive integers and m, there exists a constant C, such that
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p()tT()’* <=C’ exp a lIm I.
(III) For any k e K,

T(k)=RT()R; ( e fie).
It is easy to see that the necessity of the theorem follows from the

properties of the Fourier-Laplace transform which we mentioned in 3.
In the following we shall give an outline of a proof of the suffi-

ciency of the theorem. For the sake of brevity we assume that n3.
In cse n=2 the same method is valid with a slight modification._

Let f be a Cartan subalgebr of f. Denote by (resp. ) the com-
plexificatio of (resp. f). Fix an order in the dual space of
Let P be the positive root system of f with respect to f. Let be the
set of M1 dominant integral forms. Then A e is the highest weight
of some irreducible unitary representation of K if and only if it is lifted
to a unitary character of the Cartan subgroup. Let 0 be the set of
all such A’s. For any A e 0 we denote by v the irreducible unitary
(matrix) representation of K with the highest weight . Then the
mapping Av gives the bijection between o and . Let da be the
degree of va. Then by the Peter-Weyl theorem we can choose a com-
plete orthonormal basis {} of , consisting of the matrix elements
of irreducible unitary representations of K, i.e. -da(va),q for some

Ae0 and p,q=l,...,da. Let Jabe the set of ] in J such that
=(va),q for some p, q=l, ..., da. Let (,) be the inner product on
the dual space of J--1 i induced by the Killing form and put

1[AI=(A,A)/. We put as usual p= .
Let us now assume that T is an arbitrary B()-valued function on

satisfying the conditions (I)(III) in the theorem. We define the
kernel function of T()( e ) by

K( u, v)-- (T()#, #,)#,(u)#(v), (u, v e K) (4.1)
i,jJ

Lemma 3. For any e the series ,,ez](T()#,#,)] con-
verges, so that the series of the right side of (4.1) is absolutely con-
vergent and moreover it is uniformly convergent on every compact
subset of K x K.

For the proof of this lemma we use the condition (II) and the
following facts" For every A e 0 and ] e Ja, we have (Z+
=lA+p[# and the Weyl’s dimension formula
,ee (P, a). And moreover, the Dirichlet series ae% ]A+p]- con-
verges if s > [n/2] (see [3(b)]).

From Lemma 3 we have the following

Corollary. The function K K (, u, v)K( u, v) is of C
class and entire analytic with respect to .

The condition (II) and the above mentioned facts imply also the
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ollowing
Lemma 4. For any polynomial function p on ft, there exists a

constant C such that
]p()K( u, v)l<=C exp a]Im 1, ( e/, u, v e K).

Remark. K(;u, v) is rapidly decreasing on the real axis/.
Notice that from Lemma 3 the operator T() is of trace class (see

[3(b)], Lemma 1). Now we define a unction f on G by
2 Tr(T(a)U_,)a-da. (4.2)f(g)--

2n//(n/2) R+

By the condition (III), we can prove that
K(k; u, v)-K( ulc-, vk-) (4.3)

or every e/ and u, v,/ e K. The formulae (4.2) and (4.3) imply

(k e K, x e R) where d=(2)-/d1... d.
It follows rom Corollary to Lemma 3 and the above remark that

f is of class C. Making use o the classical Paley-Wiener theorem,

(k X)=OoranykK.rom Lemma 4 we can prove that if [x])a, f 0
Our final task is to check that T T, which can be shown by com-

paring the kernel functions of both operators.
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