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109. An Analogue of the Paley-Wiener Theorem
for the Euclidean Motion Group

By Keisaku KUMAHARA® and Kiyosato OKAMOTO**
(Comm. by Kinjird KUNUGI, M. J. A.,, May 12, 1971)

1. Introduction. The purpose of this paper is to prove an ana-
logue of the Paley-Wiener theorem for the group G of the motions of
the n-dimensional euclidean space.

Let G be the set of all equivalence classes of irreducible unitary
representations of G. Let L(G) (resp. L,(G)) be the Hilbert space of
all square integrable functions on G (resp. ) with respect to the Haar
measure (resp. the Plancherel measure). Then the Plancherel theorem
states that the Fourier transform gives an isometry of L,(G) onto L,(G)
(see §2).

Let C2(G) be the space of all infinitely differentiable functions with
compact support on G. By an analogue of the Paley-Wiener theorem
we mean the characterization of the image of C:(G) by the Fourier
transform.

As a number of articles ([11, [2], [4], [7]-[9] and etc.) indicate, in
order to attack the problem one has to consider the Fourier-Laplace
transforms of C°(G) which are (operator-valued) entire analytic funec-
tions ‘‘of exponential type’’ on a certain complex manifold. In general,
G is not a C= manifold but the space of all orbits in a real analytic
manifold by actions of the ‘“Weyl group’ which gives equivalence
relations. The Fourier-Laplace transform 7', of an element f of C2(G)
is defined on the ‘‘complexification’’ of this real analytic manifold and
satisfies certain functional equations derived from the actions of the
Weyl group.

Detailed proofs will appear elsewhere.

2. Preliminaries. Let G be the group of motions of n-dimen-
sional euclidean space R*. Then G is realized as the group of (n+1)

X (n+1)-matrices of the form (f)c f) , (ke SO(n),xc R®). Let K and
H be the closed subgroups of the elements (lg (1)), (ke SO(n)) and
(1 x) , (x € R™), respectively. Then H is an abelian normal subgroup

0 1
of G and G is the semidirect of H and K. We normalize the Harr

measure dg on G such that dg=dxdk, where dx=2r) "*dx,.--dx,
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and dk is the normalized Haar measure on K. Let $=L,(K) be the
Hilbert space of all square integrable functions on K. We denote by
B($) the Banach space of all bounded linear operators on $.

If G, is a subgroup of G, we denote by G, the set of all equivalence
classes of irreducible unitary representations of G;. For an irreducible
unitary representation ¢ of G,, we denote by [¢] the equivalence class
which contains ¢. Denote by <{, > the euclidean inner product on R™.
Then we can identify H with R” so that the value of e H at ze H is

eiH® For simplicity, we identify k£ ¢ SO(n) with (g (1)> c¢Kand xe R

with ((1) 910) e H. Because H is normal, K acts on H, and therefore on

H naturally: k&, x>=<&, k'z>. Let K, be the isotropy subgroup of K
at Ec H. If £+0, K, is isomorphic to SO(rn—1).

The irreducible unitary representations of G were enumerated and
constructed by G. W. Mackey [6] and S. Itd [5] as follows. We fix
e B. Let %. and d, be the character and the degree of [d]e K e Te-
spectively. Let R be the right regular representation of K. If a(k)
=(0,y(kHA =i, 7=d,), we put

Pv:d,j Y MR nd:m
K¢
and
P:=d,j o(mR,d.m,
Ke

where d.m is the normalized Haar measure on K,. Then P’ and P; are
both orthogonal projections of . Put §'=P°9H and $;=P:9H. We
denote by U¢ the unitary representation of G induced by &, i.e. for
kE
g‘% JGG
(Ui () =ex&v R (k™ 'u), (Fe9,ueckK).

The subspaces $:(1<:<d,) are invariant under U¢ and the representa-
tions of G induced on $? under U¢ are equivalent for all 1<i<d,. We
fix one of them and denote it by U¢’. Two representations U¢° and
U¢* are equivalent if and only if there exists an element k¢ K such
that &’=k& and [¢]=[0"*] where ¢'*(m)=0'(kmk™"), (m ¢ K,).

First we assume that £+0. Then U%° is irreducible and every
infinite dimensional irreducible unitary representation is equivalent to
one of U, (£+0,[c]1eK,). Since 9=P,1c4,9” and §'=Di,9;, we
have

Uiz @ (UD---@U). 2.1
—_—

Lele e d, times

Next we assume that £§=0. Then U%° is reducible and K,=K.
For any irreducible unitary representation ¢ of K we define a finite
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dimensional irreducible unitary representation U’ of G by U;=oa(k)

where g—:.(gc ?i)eG. Then we have U =U®...-@U° and U°
S —— o ——

d, times

= @, U". Moreover every finite dimensional irreducible unitary re-
[e]leK

presentation of G is equivalent to one of U’, ([¢] ¢ K.

We denote by (). (resp. (G),) the set of all equivalence classes of
infinite (resp. finite) dimensional irreducible unitary representations
of G.

Let R, be the set of all positive numbers and let M be the subgroup

1 00

of the elements <O m 0), (m e SO(n—1)). Then for any & ¢ H of the
0 0 1

form %@, 0, --.,0), ac R,, we have K,=M. It follows from the above

results that (G)., can be identified with R, X M. It can be proved that
the Plancherel measure of ((A})0 is zero and the Plancherel measure on
(6). is explicitly expressed as (2/2"2['(2/n))a""'da®d,. For any
fe (@), we put

T, 0= f@Udg  (E+0,lo1c .
For &£=%a,0,...,0), (@cR,), we write briefly T.§,o)=Ta,o).
Then the following Plancherel formula holds:

2 g 2 J‘ 9 n—1 2.2
J o= AT (02 e O ) g, | T/ O 0", (2:2)
where | ||, denotes the Hilbert-Schmidt norm.

For any f ¢ C3(G) we put
T,&)=[ r@Uidg.

The space, on which T (&, o) operates, depends not only on ¢ but also
on &. However T,(§) is an operator on a fixed Hilbert space ©, so that
we can consider the B(9)-valued function T';,. We shall call T, the
Fourier transform of f. As above we write T,(&)=T,a) for
&=%a,0,...,0), (@c R,). Then it follows from (2.1) and (2.2) that

2 —_ 2 2 n—1
Jrords =gt | | 1Tl de.

3. Definition and some properties of the Fourier-Laplace trans-
form. For each { e H(=C") we define a bounded representation of
G on § by

(U F)(w) =<2 F(k~'u), (Fe,uckK),

k x) e G. For any f e C(®), put

where g= (0 1
T(0)= j T @Usdg.
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Then T, is a B({)-valued function on H°. We call T, the Fourier-
Laplace transform of f.

Since K is compact, for each f e C:(G) there exists a positive

number a such that supp (f)C {(g’ 910) eG;|x|Za, ke K} We denote

by 7, the greatest lower bound of such a’s. Throughout this section we
assume that f € C2(G) such that r,<a for a fixed a € R,.

Lemma 1. There exists a constant C=0 depending only on f such
that | T (Q)||£CexpalIm|.

This lemma is easily verified using the Schwarz’s inequality.

A B(9)-valued function 7' on H° is called entire analytic if it is
analytic at each point of B¢ (for the definition of a Banach space valued
analytic function, see [3(a)]). Then it is easy to see that T, is entire
analytic and that, for any { e H¢, T Q) leaves the space C~(K) invariant.

We denote by 4 (resp. p) the representation of K on C~(G) defined
by

AR f(@=rF"9)  (resp. p(k)f(9)=rf(gk))

for ke K and ge G. We also denote by 4 and g the corresponding
representations of the universal enveloping algebra of the Lie algebra
f of K. We denote by 4 the Casimir operator of K (In case n=2, we
put 4= —X? for a non-zero X ¢ ¥). For any polynomial function p on
He, we define a differential operator p(D) on H by p(D)=p(1 /i-0]0x,,
-++,1/i.0/0x,). The following lemma is not difficult to prove but plays
an important role.

Lemma 2. 1) For any non-negative integers 1 and m we have
AT (©)Am =T p(d™) (), (€ € B). )

2) For any K—invarignt polynomial function p on HC¢, we have
POT Q=T ey (D), (L € HY), where p*(Q)=p(—0).

From Lemma 1 and Lemma 2 we have

Proposition 1. For any polynomial function p on He and for any
non-negative integers | and m, there exists a constant C4™ such that

|p@O4T (DA™ =Cy™ exp a|Im {|.

Finally from the definition of T'; we have the following proposi-
tion (the functional equations for T',).

Proposition 2. T (k{)=R,T,({)R;*( e A, ke K).

4, The analogue of the Paley-Wiener theorem.

Theorem. A B(§)-valued function T on H is the Fourier trans-
form of f e C2(G) such that r,<a(a>0) if and only if it satisfies the
following conditions:

(I) T can be extended to an entire analytic function on He.

(II) For any e Be, T leaves the space C=(K) invariant.
Moreover for any polynomial function p on B¢ and for any non-nega-
tive integers | and m, there exists a constant Cy™ such that
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o4 T4 | =C4™ exp a|Im (.

(III) Forany ke K,

Tk =R.TOR:?* (e HO.

It is easy to see that the necessity of the theorem follows from the
properties of the Fourier-Laplace transform which we mentioned in § 3.

In the following we shall give an outline of a proof of the suffi-
ciency of the theorem. For the sake of brevity we assume that n=3.
In case n=2 the same method is valid with a slight modification.

Let t be a Cartan subalgebra of f. Denote by {¢ (resp. t°) the com-
plexification of f (resp. t). Fix an order in the dual space of v —1 t.
Let P be the positive root system of f° with respect to{°. Let $ be the
set of all dominant integral forms. Then 4 ¢ is the highest weight
of some irreducible unitary representation of K if and only if it is lifted
to a unitary character of the Cartan subgroup. Let ¥, be the set of
all such A’s. For any 4§, we denote by r, the irreducible unitary
(matrix) representation of K with the highest weight 4. Then the
mapping A—7, gives the bijection between g, and K. Let d, be the
degree of 7,. Then by the Peter-Weyl theorem we can choose a com-
plete orthonormal basis {@,},., of §, consisting of the matrix elements
of irreducible unitary representations of K, i.e. ®;=+/d(z,),,, for some
AeP, and p,q=1,---,d,. Let J,be the set of 7 in J such that @,
=+d(ty,q for some p,q=1,---,d,. Let (,) be the inner product on
the dual space of 4/ —1 t induced by the Killing form and put

A|l=4, HY*. We put as usual p=l Dwer Q.
| 2

Let us now assume that T is an arbitrary B()-valued function on
B satisfying the conditions (I)~(III) in the theorem. We define the
kernel function of T(0)({ € H®) by

KQC;u,v)= ;_.; J(T(C)@p D)0 (v), (u,v € K) 4.1

Lemma 3. For any (e H® the series 3 e, |(T(®,,®))| con-
verges, so that the series of the right side of (4.1) is absolutely con-
vergent and moreover it is uniformly convergent on every compact
subset of A°x K x K.

For the proof of this lemma we use the condition (II) and the
following facts: For every Ae¢ @, and je J,, we have (4+|pP®;
=|A4+p["®; and the Weyl’s dimension formula d,=[]..r (41+p,a)/
[Meer (0, @). And moreover, the Dirichlet series },.5%,|4+p|° con-
verges if s>[n/2] (see [3(b)]).

From Lemma 3 we have the following

Corollary. The function H*x KX K 3 (L, u, ©)—~K( ; u, ) is of C~
class and entire analytic with respect to (.

The condition (II) and the above mentioned facts imply also the
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following
Lemma 4. For any polynomial function p on He, there ewists a
constant C, such that
QK w,0|<Cyexpaliml],  (CeHuvek).
Remark. K({;wu,v) is rapidly decreasing on the real axis H.
Notice that from Lemma 3 the operator 7'({) is of trace class (see
[3(b)], Lemma 1). Now we define a function f on G by

—_ 2 a n-1
) | 1rr@Us-ar-da. 4.2)
By the condition (III), we can prove that
K& 5 u, v)=K(; uk™, vk™) (4.3)

for every (e He and w,v,kc K. The formulae (4.2) and (4.3) imply

(ke K, x ¢ R*) where d§=2r) "*d§,- - -d&,.
1t follows from Corollary to Lemma 3 and the above remark that
f is of class C~. Making use of the classical Paley-Wiener theorem,

from Lemma 4 we can prove that if |x|>a, f (lg i) =0 for any ke K.

Our final task is to check that T,=7, which can be shown by com-
paring the kernel functions of both operators.
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