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104. A Remark on the Concept o Channels. llI

An Algebraic Theory of Extended Toeplitz Operators
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Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjir.5 KUNUGI, M. J. A., May 12, 1971)

In the previous notes [1], a few elementary properties of general-
ized channels are discussed. In the present note, some problems on
extended Toeplitz operators will be studied as a kind of generalized
channels.

1. In the classical theory of Toeplitz operators, a Laurent operator

l on L is defined by the multiplication by an essentially bounded func-
tion with functions of L2(( e L2--(f e L2) where L is the Hilbert space
of all square integrable functions defined on the unit circle with the
normalized Lebesgue measure. A Toeplitz operator t is defined by

( 1 ) t-pllH2,
where H is the subspace of L consisting those functions whose Fourier
coefficients vanish on negative integers and where p is the projection
belonging to H2.

An abstraction of the above situation is recently given by Devinatz
and Shinbrot [2]: An abstract Hilbert space H plays the role of L2,
and H is replaced by an arbitrary (closed) subspace M. Every ele-
ment a of B(H), the algebra of all (bounded linear) operators, defines
a general Wiener-Hopf operator
(1’) t(a) =palM,
where p is the projection belonging to M.

An another moderate abstraction is given by Douglas and Pearcy
[4]. Every element of a maximally abelian yon Neumann algebra A
plays the role of Laurent operator. If each vector of M is separating
in the sense of Dixmier [3] for A, M is called a weak Riesz space. If
M and M’-are weak Riesz subspaces for A, then M is called a Riesz
subspace. A Riesz system is the triple (H,A,M). Every element
a e A is called a generalized Laurent operator (simply (GL)operator)
and t(a) a generalized Toeplitz operator (simply (GT) operator).

2. Assume that A is a von Neumann algebra acting on H. Then
the both cases are unified: A B(H) for the case of Devinatz-Shinbrot
and A is maximally abelian for the case of Douglas-Pearcy. In the
below, instead of t(a), the following notation will be used:
(1") a=palM.
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The following proposition is easily checked"
I. The mapping a--.a, from A into B(pH) satisfies

( 2 ) (a+flb)=%+b,
( 3 ) (%)* (a*),
(4) %>=0 if a>=0,
(5)

Since the mapping is normal in the sense of Dixmier [3] and since
the image 1 of the identity acts as the identity on M=pH, the require-
ments of generalized channels in [1] are satisfied. Hence I implies

IIo The mapping is a generalized channel.
In the terminology of [1], B(M) is the input and A is the output o

the generalized channel. By II and [1; II, 3], one has
III. The closed numerical range W is contracted by the mapping"

W(a) W(%). Especially, a(%)c W(a), that is, the spectrum of the
image is contained in the closed numerical range.

In general, it is not decidable without urther restriction that 6(%)
contains or is contained in a(a). For example,

(1 1) and p_(1 O)a--
1 1 0 0’

then a(%)- {1} whereas a(a) {0,2}.
3. Here a condition will be discussed which implies the so-called

Hartman-Wintner spectral inclusion theorem"
( 6 (a) (%).

The following condition is essentially due to Devinatz and Shinbrot
[2]"

There is a set U of unitary operators in the commutator A’ such
(DS)

that UM is dense in H.
IV. If the condition (DS) is satisfied, then the Hartman-Wintner

Theorem holds. Moreover, the norm is preserved"
(7) II%ll-Ilall.

For any e M, if av is invertible, then there is >0 such as

<=llavll. Hence

au:
for every u e UcA’. By (DS), UM is dense in H, so that a is 1" 1 on
H and has closed range. Whereas the same is true or a*; hence aH
=H and so a is invertible. This proves

V. Under (DS), a is invertible if av is invertible.
Hence (6) ollows, which proves the first half.
For the second half,

sup {I (au uw) , v e M, II--II v 1, u e U} a I1.
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4. Let K be a generalized channel with the output A and the
input B. Being taken into consideration of the previous section, K will
be called a Hartman-Wintner channel if K satisfies
( 8 ) a(Ka) a(a), a I[--I[ Ka

The definition implies at once
VI. In a Har$man-Wintner channel,

( 9 ) a(a) a(Ka)c W(Ka)c W(a).
Let r(a) be the spectral radius of a and w(a) the numerical radius

o a, then VI implies
VII. In a Harman-Winner channel,

(10) r(a) <= r(Ka) <= w(Ka) <= w(a) <= a I[--[[ Ka
If eo S denotes the convex hull of S, then (9) implies

eo a(a) eo a(Ka) W(Ka) W(a),
which implies (10) (e. [7]).

VIII. Through a Hartman-Wintner channel, the closed numeri-
cal range of a convexoid is preserved" W(Ka)- W(a) if W(a)--co a(a).

A similar observation on (10) has
IX. A Hartman-Wintner channel preserves being spectraloid

(resp. convexoid, normaloid).
By [7], an operator a is spectraloid if and only if r(a)--w(a);

hence (10) implies r(Ka)-w(Ka), that is, Ka is spectraloid.
Similarly, a is a normaloid if and only if a ll=r(a); hence (10) im-

plies r(Ka)-llKall, and so Ka is a normaloid.
The case or convexoids ollows rom VIII.
The ollowing proposition is obvious by the definition"

X. If K is a Hartman-Wintner channel, then Ka is not quasi-
nilpotent if a is not quasinilpotent. Consequently, if A is abelian then
KA contains no nonzero quasinilpotent element.

It is remarked that IX is not a usual property of generalized
channels. The reduction of a normaloid is not a normaloid, cf. [5].. Let A be a yon Neumann algebra acting on H. If the map-
ping a-.a for a fixed projection p (not necessarily belonging to A) is
a Hartman-Wintner channel, then A is called a Hartman-Wintner al-
gebra upon M=pH, and M is called a Hartman-Wintner subspace for A.

XI. A yon Neumann subalgebra B of a Hartman-Wintner alge-
bra upon M is a Hartman-Wintner algebra upon M.

For a fixed subspace M (or the projection p belonging to M), an
operator a is called an extended Laurent operator (shortly (EL) opera-
tor) if a (and 1) generates a Hartman-Wintner algebra upon M, and a
is called an extended Toeplitz operator (shortly (ET) operator). By the
definition VIII and IX imply

XII. The closed numerical range of a convexoid (EL) operator is
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identical with that of its (ET) operator" W(a)= W(a).
XIII. If an (EL) operator is a spectraloid (resp. convexoid, nor-

maloid) then its (ET) operator is a spectraloid (resp. convexoid, nor-
maloid) too.

Furthermore, (9) and (10) imply
(11) a(a) a(a) W(a) W(a),
(12) r(a)

_
r(%)

_
w(a) <_ w(a)

_
% a

6. Suppose that A is a Hartman-Wintner algebra upon M=pH.
An element a e A is analytic if aM<M or ap=pap. If a is analytic,
then a is called analytic. Let A0 be the set of all analytic (ET) opera-
tors defined by A.

XlV. If a e A0, then
(13) (ba) ba (b e A).

Since a is analytic, the definition implies
ba (pbp)(pap) pbpap pbap (ba).

This implies also
XVo Ao is an algebra.
By means of XV, A0 will be called the analytic algebra of A. On

A0, the following version of the F. and M. Riesz Theorem is introduced-
(FM) The support of any nonzero element of Ao is 1.

The first consequence o (FM) is
XVIo Ao contains no nonzero-zero-divisor.
If (ab)=0 for a, b e A0 then abp=O by the analyticity. If be0,

then ran bpO where ran c denotes the range of c; hence ker
which contradicts with (FM) if a:/:0 where ker d denotes the kernel of
d. If a4:0, then (FM) implies ran bp=O, so that b=0 by (FM).

XVII. Ao contains no non-trivial idempotent.
If q e A0 and q=q, then q(q--1)=0; hence by XVI either q=0 or

q=l.

XVIII. If a is analytic and invertible in Ao, then a- is also
analytic and
(14) (a)-= (a-9.

In a Hartman-Wintner algebra, the invertibility of % implies the
existence of a-, and l=(a-a)=(a-9% by (13). Therefore (a-t) is
a left inverse of an invertible element a, and so (14) is proved.

Now, (14) implies
apa-lp papa-Ip (a)(a-) p,

so that pa-p=a-p and a-* is analytic as desired.
It is deducible from XVIII that the spectra of % in A0 and as ope-

rator coincide. Basing on this act and assuming that A0 is abelian,
one enables to tail the proof of a theorem of Douglas and Pearcy [4] The
spectrum o an analytic Toeplitz operator is connected. The Gelfand
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representation, a theorem o Silov and XVII imply that the spectrum
of A0 is connected. Every a e A0 continuously maps the connected com-
pact space onto a(a), so that a(a) is connected.

7. In the theory of general Wiener-Hopf operators, one of main
problems is to determine a condition which insures the invertibility of

a by that of a. Devinatz and Shinbrot [2] show that the strict positi-
vity of the real part of a is sufficient, where c is strictly positive if there
is 0 such as c >= 0. The ollowing ormal extension is possible"

XIX. If zero is excluded by the closed numerical range of an
operator a, then the Wiener-Hopf operator ap is invertible for any pro-
]ection p.

By III, W(a) W(a); hence 0 e W(a) by the hypothesis. Since
a(ap)c W(a), 0 e a(a) or a is invertible.

If a has the strictly positive real part, then 0 is not in W(a) hence
XIX implies the theorem of Devinatz and Shinbrot. However, the
implication is not proper. Berberian points out, 0 e W(a) implies that
the unitary part o the polar decomposition of a is "cramped" hence a
suitable rotation carries a into an operator with the strictly positive
real part, cf. [8] or a proof and also c. [6].

8. Basing on an idea of Poussin, Devinatz and Shinbrot [2] give
a decomposition theorem" If a is invertible, then there are a unitary
u and an invertible operator b such that a--ub and b maps M onto it-
self. H. Choda gives the ollowing generalization in his seminar talk"

XX. If a and p belong to a yon Neumann algebra A and a is in-
vertible. Then there are a unitary u and an invertible b in A such that
a-ub and b maps M onto itself.

Let N-ran ap and q be the projection belonging to N. Then

N-- ran ap supp pa* supp ap M,
where supp c denotes the support o c. Hence there is a partial iso-
merry v e A such that

q-v’v, p-w*.
By the definition, one has

N+/-=ker pa*--{$ pa*$-O}
--{$; a*$ e (pH)+/-}
{ a* =P’V for some V e H}
( --a*-lp+/-] for some r] e H}
ran a*-p.

On the other hand, one has
N+/-- supp pZa-lN supp a*-ip+/-=M+/-

hence there is a partial isometry w e A such that

IOI=WW*q+/- w’w,
If u=v+w, then u e A is unitary and
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uapH u ran ap uqH---pH.
If b=ua, then b maps M=pH onto M, and b is invertible since u and a
are invertible, which completes the proof of XX.
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