102. On An Ergodic Abelian *M*-Group^{*)}

By Ping Kwan TAM

(Comm. by Kunihiko KODAIRA, M. J. A., May 12, 1971)

Let \mathcal{M} be an abelian von Neumann algebra, F an \mathcal{M} -group (i.e. a group of automorphisms of \mathcal{M}). Let [F] denote the full group generated by F. Choda proved in [1] that F is maximal abelian in [F] if F is ergodic, abelian and free, by techniques of cross product algebras. In this note we prove, by completely different techniques, the following theorem.

Theorem. Suppose that \mathcal{M} is an abelian von Neumann algebra, and F is an ergodic abelian \mathcal{M} -group.

Then:

(i) F is free.

(ii) F is maximal abelian in [F].

(iii) $F' \cap [F] = F$.

(iv) $\beta \in F' \Rightarrow E(\beta, \alpha) \neq 0$ for at most one $\alpha \in F$, where $E(\beta, \alpha)$ is by definition sup $\{F \text{ projection in } \mathcal{M}: \beta(M) = \alpha(M) \text{ for all } M \in \mathcal{M} \text{ with } FM = M\}.$

Before we prove the preceding theorem, we shall prove an auxiliary result.

Lemma 1. Suppose that \mathcal{M} is an abelian von Neumann algebra, and F is an ergodic abelian \mathcal{M} -group. Suppose that β is in F'. Then if α_1 and α_2 are in F with $E(\beta, \alpha_1) \neq 0$, and $E(\beta, \alpha_2) \neq 0$, we have:

 $E(\beta, \alpha_1) = E(\beta, \alpha_2).$

Proof. Let β agree with α_i on a non-zero projection P_i of $\mathcal{M}(i = 1, 2)$. Since F is ergodic there exists $\alpha \in F$ such that $Q = \alpha(P_1)P_2 \neq 0$. Now if $M \in \mathcal{M}$ with $\alpha(M)Q = \alpha(M)$ then $\beta(M) = \alpha_1(M)$. So for $M \in \mathcal{M}$ with MQ = M we have first $\beta(M) = \alpha_2(M)$, and secondly $\beta(M) = (\alpha\beta) \times (\alpha^{-1}(M)) = \alpha\alpha_1(\alpha^{-1}(M)) = \alpha_1(M)$, where we have used both that $\beta \in F'$ and that F is abelian. Thus we see that α_1 and α_2 agree on $\alpha(P_1)P_2$. That is, any non-zero projection (of \mathcal{M}) on which β agrees with α_2 majorizes a non-zero projection (of \mathcal{M}) on which α_1 agrees with α_2 . Therefore $E(\beta, \alpha_2)[I - E(\alpha_1, \alpha_2)] = 0$, or $E(\beta, \alpha_2) \leq E(\alpha_1, \alpha_2)$. By the definition of $E(\alpha_1, \alpha_2)$ we obtain

$$E(\beta, \alpha_2) \leq E(\beta, \alpha_1).$$

^{*)} The results of this paper are contained in the author's Ph. D. thesis at the University of British Columbia. He is grateful to his supervisor, Dr. D. Bures, for his helpful supervision.

The reverse inequality is obtained by reversing the roles of α_1 and α_2 , and we conclude that

 $E(\beta, \alpha_1) = E(\beta, \alpha_2).$

We shall also need the following result of Bures [2].

Lemma 2 [2, Proposition 4.3]. Suppose that α and β are automorphisms of an abelian von Neumann algebra \mathcal{M} . Then there exists a family (E_i) of projections of \mathcal{M} such that

and

$$(\alpha(E_i))(\beta(E_i)) = 0$$
 for each *i*.

 $\Sigma E_i = I - E(\alpha, \beta)$

Now we prove our theorem.

Proof of Theorem. Ad (i). Let e be the identity of F, and let $\beta \in F \setminus \{e\}$. Since $E(\beta, \beta) = I$ and $\beta \neq e$, we have $E(\beta, e) \neq E(\beta, \beta)$. Now as F is abelian, $\beta \in F'$ and so, by Lemma 1, $E(\beta, e) = 0$. By Lemma 2, there exists a family (E_i) of projections of \mathcal{M} such that $\Sigma E_i = I$ and $\beta(E_i)E_i = 0$ for each i. So F is free.

Ad (ii). Let F_1 be an abelian subset of [F] containing F. Let $\beta \in F_1$. Then as F_1 is abelian and $F_1 \supset F$, $\beta \in F'$. Now $\beta \in [F]$ also, so $\sup \{E(\beta, \alpha) : \alpha \in F\} = I$,

or

$$\sup \{E(\beta, \alpha) : \alpha \in F \text{ and } E(\beta, \alpha) \neq 0\} = I.$$

By Lemma 1 this means that for some $\alpha_0 \in F$,

$$E(\beta, \alpha_0) = I$$
 i.e. $\beta = \alpha_0$.

So $\beta \in F$. We conclude that $F_1 = F$. Thus F is maximal abelian in [F].

Ad (iii). As F is abelian we obviously have $F' \cap [F] \supset F$. The above proof of (ii) shows in fact that $F' \cap [F] \subset F$. Thus we have $F' \cap [F] = F$.

Ad (iv). Suppose that $E(\beta, \alpha_1) \neq 0$ and $E(\beta, \beta_2) \neq 0$ for α_1 and α_2 in F. Then by Lemma 1, α_1 and α_2 agree on the non-zero projection $Q \equiv E(\beta, \alpha_1) = E(\beta, \alpha_2)$. Now let (E_i) be any family of orthogonal projections in \mathcal{M} such that $\alpha_1^{-1}\alpha_2(E_i)E_i=0$ for each i. Let $Q_i = QE_i$. Then we have $Q_i \leq Q$ and $Q_i \leq E_i$ so that $Q_i = \alpha_1^{-1}\alpha_2(Q_i)Q_i \leq \alpha_1^{-1}\alpha_2(E_i)E_i=0$ for each i. As $Q_i = QE_i$ and $Q \neq 0$, so $\Sigma E_i \neq I$. Now by (i), F is free. Thus $\alpha_1^{-1}\alpha_2 = e$, i.e. $\alpha_1 = \alpha_2$. This completes the proof.

References

- M. Choda and H. Choda: On extensions of automorphisms of abelian von Neumann algebras. Proc. Japan Acad., 43, 295-299 (1967).
- [2] D. Bures: Abelian subalgebras of von Neumann algebras. pre-print (to be published in the Memoirs of Amer. Math. Soc.).

No. 5]