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101. A Remark on Perturbation of m-accretive
Operators in Banach Space

By Yoshio KONISHI
Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., May 12, 1971)

1. Introduction. Let X be a real Banach space with the norm
denoted by || -||. By definition a (possibly) multiple-valued operator A
in X is aceretive if for each 2>0 and u, v € D(A),

le—y||>||lu—v| whenever xe(+A4A)u,yecd+AiA)v.
An accretive operator A in X is said to be m-accretive if R(I+A)=X.
For the notion of “multiple-valued” operator, we refer to T. Kato [6],
§ 2.

The purpose of the present paper is to give a criterion for the m-
accretiveness of the sum of two m-accretive operators in X and then
apply it to a certain nonlinear partial differential equation. Our result
may be considered to constitute an analogue of the result of H. Brezis,

M. G. Crandall and A. Pazy [1] for perturbation of maximal monotone
sets.

2. A perturbation lemma. Let A and B be m-accretive opera-
tors in X. As usual we define the Yosida approximation B.(¢>0) of
B by

B,=e{I-(I+eB)™},
which is a single-valued Lipschitz continuous operator defined on all of
X. It is easily seen that A+ B, is again m-accretive and accordingly
that for each f € X there exists a unique solution u, ¢ D(A) of the equa-
tion
2.1) u,+Y,+Bu,=f, Y, € Au,.

Lemma 1. Assume that X is a real Banach space with the uni-
formly convex dual space X* and that A and B are m-accretive opera-
tors in X such that D(A)ND(B) 0. If for each fixed fe X | Bu,| in
(2.1) is bounded as ¢ tends to zero, then A+ B is m-accretive.

We notice that if X* is uniformly convex, the duality map F' de-
fined as

Fu={u* e X*; (u,u®)=|u|*=|u*|, ue X,
is single-valued and is uniformly continuous on any bounded set (T.
Kato [5]).

Proof of Lemma 1. The argument of the proof is standard (see

Y. Komura [7] and T. Kato [5,6]). Since D(4 +B) 50, there is no loss
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of generality in assuming that (4 + B)0 5 0 and we shall henceforth as-
sume this. For each fixed f e X, there exists a sequence {¢,},-, such
that ¢, 0 and

2.2) w-lim B, u,, =2,

n—o

exists in X. Since ||u,,—u,,[|<2| || and
Il (w.,, —u.,)—{I +e.B) "u,,— T+ enB) U, } | <(en+emn)- sup | B, |

for n,m=1,2, ..., we have
lim | F(u,,—u,,)—F(I+¢,B)'u,,—I+¢,B)'u,,)||=0.

On the other hand, by the accretiveness of A and B, we have
., — U, | = e, — U, F(04,, —U,,,))
<-(B.,u,,—B.,u,,, F(u,,—u,,))
<-(B.u.,—B.u.,, Fu,,—u,,)
—F(I+¢,B)"'u,,—(I+e,B)'u,,))

for n,m=1,2, - .-, which implies that lim |u,,—wu,,||=0. Hence we
set ,
(2.3) lim u, , =u,.
In view of (2.1), (2.2) and (2.3), we obtain by Lemma 3.7 (a) and Lemma
4.5 in T. Kato [6] that f ¢ R(I+ A+ B). Q.E.D.

3. Example. We denote by 2 a bounded domain in R* with
smooth boundary 02, by 9(2) the Schwartz space and by W&2(Q),
Wt 2(Q2) the Sobolev spaces. Let 8 be an m-accretive operator in R such
that D(3) 50. We introduce the following m-accretive operator ﬁ in
L)

D(E):{u e L*(Q); for some v ¢ L?(Q), v(x) € B(u(x)) a.e. in Q},

E(u):{v e L?(2); v(x) € B(u(x)) a.e. in Q} for u e D(E).

Theorem 2. We assume that 1<p<+ oo and define an operator
A in LP(9) by

D(D)=W52(2) N W=(2) N D(B),
Au=—du+ Bw) for ue (4).
Then A is m-accretive.

It is well known that — 4 with the domain W§2(Q) N W%?(Q) is m-
accretive in L?(Q).

Proof of Theorem 2. As in the proof of Lemma 1 we can assume
that 8(0) 0. Let f be an arbitrary element of L?(2) and let u, (¢>0)
be the unique solution of the equation: u,— du, + Bs(us)—_- f. Then
B  (u, F(B.w)))+ (—4du., F(B.w))) +| B < F1I- 1| B.(w) .

Since F(v)=v|v|P?/||v|P"% for v € L?(2) \ {0}, we have
3.2) (u,, F(B.(u,))>0.

Next we shall show that

(3.3) (—4u,, F(8,(u,)))=>0.
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Let {u™}y.,C D) be a sequence such that lim ||u{™ —u,||=0 and
N-oo

define a sequence {¢,, },», of monotone non-decreasing Lipschitz contin-
uous functions on R by the following:
(i) If2<p<+ oo, Ou(s)=s|s|P™? (seR).
. _ (/v (s[<1)y)
(i) If1<p<2, V(9= s |s[-? (s1>1/1).
Then we can easily obtain that
(=4 — 2D u, g‘o(y)(ﬁ,((l—ld)"‘uﬁm)))_>_0 for each 1>0.
Letting v tend to infinity, we have by Lebesgue’s theorem that
(— AT =24 u®, F(B(I—24)"uM))) >0 for each 41>0.
Letting N tend to infinity and then A to zero, we obtain (3.3) since F' is
continuous. In view of (3.1), (8.2) and (8.3), we have || B.u)|<| S
Therefore by Lemma 1 4 is m-accretive. Q.E.D.
Remark. (i) /4 is also “T-acecretive” (B. Calvert [2]): —4 is
“dispersive (s)” (Y. Konishi [8, 9]). (ii) Moreover — A satisfies
D,(e, 0, + o) for any non-negative constant function e (K. Sato [10]):
If we set o.(f,9)= 111151 e (|(f—e+e)t||—II(f—e)*|) for f,ge L?(Q),

then for every u, v ¢ D(A) with (u—v—e)* #0,
o (u—v,x—y)<0 whenever xe —Au,yc —Av.

(iii) If B0) 20, —A|1p0y+ € KL (LP(2)*)G. Da Prato [4]) ; where L?(2)*
is the cone of all non-negative elements of L?(2).

Applying Theorem 7.1 in T. Kato [6] and Theorem B in Y. Konishi
[8] to the operator A in Theorem 2, we have

Corollary 3. Assume that 1<p<+oo and u,€ Wiy?(2) N WH2(2)
ND(B). Then the equation

8.4) 0cou/dt—du+Bw)  in 2x(0, 4 o)
u(x, t)=0 on 02 x (0, + o)
w(x, 0) =u,(x) n 9

has a unique solution u(x,t) € C(0, + oo ; L?(2)) such that u(x,t) ¢ Wi?
@ NW>2(2) N D(B) for every fixed t>0 and du/dt e L=(0, + oo ; L2(2)).
Moreover if u, and u, are solutions of (8.4) such that u,(x, 0)>u,x,0)
a.e. i Q, then u,(x, t)>u,(x, t) a.e. in Q2 for every fixed t>0.
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