## 101. A Remark on Perturbation of m-accretive Operators in Banach Space

By Yoshio Konishi
Department of Mathematics, University of Tokyo

(Comm. by Kunihiko Kodaira, M. J. A., May 12, 1971)

1. Introduction. Let X be a real Banach space with the norm denoted by  $\|\cdot\|$ . By definition a (possibly) multiple-valued operator A in X is *accretive* if for each  $\lambda > 0$  and  $u, v \in D(A)$ ,

 $||x-y|| \ge ||u-v||$  whenever  $x \in (I+\lambda A)u, y \in (I+\lambda A)v$ .

An accretive operator A in X is said to be m-accretive if R(I+A)=X. For the notion of "multiple-valued" operator, we refer to T. Kato [6], 82

The purpose of the present paper is to give a criterion for the maccretiveness of the sum of two m-accretive operators in X and then apply it to a certain nonlinear partial differential equation. Our result may be considered to constitute an analogue of the result of H. Brezis, M. G. Crandall and A. Pazy [1] for perturbation of maximal monotone sets.

2. A perturbation lemma. Let A and B be m-accretive operators in X. As usual we define the Yosida approximation  $B_{\epsilon}(\epsilon > 0)$  of B by

$$B_{\varepsilon} = \varepsilon^{-1} \{ I - (I + \varepsilon B)^{-1} \},$$

which is a single-valued Lipschitz continuous operator defined on all of X. It is easily seen that  $A+B_{\epsilon}$  is again m-accretive and accordingly that for each  $f\in X$  there exists a unique solution  $u_{\epsilon}\in D(A)$  of the equation

$$(2.1) u_{\bullet} + y_{\bullet} + B_{\bullet} u_{\bullet} = f, y_{\bullet} \in A u_{\bullet}.$$

Lemma 1. Assume that X is a real Banach space with the uniformly convex dual space  $X^*$  and that A and B are m-accretive operators in X such that  $D(A) \cap D(B) \ni 0$ . If for each fixed  $f \in X ||B_{\epsilon}u_{\epsilon}||$  in (2.1) is bounded as  $\epsilon$  tends to zero, then A + B is m-accretive.

We notice that if  $X^*$  is uniformly convex, the duality map F defined as

$$Fu = \{u^* \in X^*; (u, u^*) = ||u||^2 = ||u^*||^2\}, \quad u \in X,$$

is single-valued and is uniformly continuous on any bounded set (T. Kato [5]).

Proof of Lemma 1. The argument of the proof is standard (see Y. Kōmura [7] and T. Kato [5,6]). Since  $D(A+B) \ni 0$ , there is no loss

of generality in assuming that  $(A+B)0\ni 0$  and we shall henceforth assume this. For each fixed  $f\in X$ , there exists a sequence  $\{\varepsilon_n\}_{n\geq 1}$  such that  $\varepsilon_n\downarrow 0$  and

$$\text{w-}\lim_{n\to\infty} B_{\epsilon_n} u_{\epsilon_n} = z_0$$

exists in X. Since  $||u_{\epsilon_n} - u_{\epsilon_m}|| \le 2 ||f||$  and

$$\|(u_{\epsilon_n}-u_{\epsilon_m})-\{(I+\varepsilon_nB)^{-1}u_{\epsilon_n}-(I+\varepsilon_mB)^{-1}u_{\epsilon_m}\}\|\leq (\varepsilon_n+\varepsilon_m)\cdot \sup_{s\downarrow 1}\|B_{\epsilon_\nu}u_{\epsilon_\nu}\|$$

for  $n, m=1, 2, \dots$ , we have

$$\lim_{n\to\infty}\|F(u_{\epsilon_n}\!-\!u_{\epsilon_m})\!-\!F((I+\varepsilon_nB)^{-1}u_{\epsilon_n}\!-\!(I+\varepsilon_mB)^{-1}u_{\epsilon_m})\|\!=\!0.$$

On the other hand, by the accretiveness of A and B, we have

$$\begin{split} \|u_{\varepsilon_{n}} - u_{\varepsilon_{m}}\|^{2} &= (u_{\varepsilon_{n}} - u_{\varepsilon_{m}}, F(u_{\varepsilon_{n}} - u_{\varepsilon_{m}})) \\ &\leq -(B_{\varepsilon_{n}} u_{\varepsilon_{n}} - B_{\varepsilon_{m}} u_{\varepsilon_{m}}, F(u_{\varepsilon_{n}} - u_{\varepsilon_{m}})) \\ &\leq -(B_{\varepsilon_{n}} u_{\varepsilon_{n}} - B_{\varepsilon_{m}} u_{\varepsilon_{m}}, F(u_{\varepsilon_{n}} - u_{\varepsilon_{m}}) \\ &- F((I + \varepsilon_{n}B)^{-1} u_{\varepsilon_{n}} - (I + \varepsilon_{m}B)^{-1} u_{\varepsilon_{m}})) \end{split}$$

for  $n, m=1, 2, \cdots$ , which implies that  $\lim_{n,m\to\infty} \|u_{\epsilon_n} - u_{\epsilon_m}\| = 0$ . Hence we set

$$\lim_{n\to\infty} u_{\epsilon_n} = u_0.$$

In view of (2.1), (2.2) and (2.3), we obtain by Lemma 3.7 (a) and Lemma 4.5 in T. Kato [6] that  $f \in R(I+A+B)$ . Q.E.D.

3. Example. We denote by  $\Omega$  a bounded domain in  $R^n$  with smooth boundary  $\partial \Omega$ , by  $\mathcal{D}(\Omega)$  the Schwartz space and by  $W_0^{k,\,p}(\Omega)$ ,  $W^{k,\,p}(\Omega)$  the Sobolev spaces. Let  $\beta$  be an m-accretive operator in R such that  $D(\beta) \ni 0$ . We introduce the following m-accretive operator  $\bar{\beta}$  in  $L^p(\Omega)$ :

$$D(\bar{\beta}) = \{u \in L^p(\Omega) ; \text{ for some } v \in L^p(\Omega), \ v(x) \in \beta(u(x)) \text{ a.e. in } \Omega\}, \ \bar{\beta}(u) = \{v \in L^p(\Omega) ; \ v(x) \in \beta(u(x)) \text{ a.e. in } \Omega\} \text{ for } u \in D(\bar{\beta}).$$

Theorem 2. We assume that 1 and define an operator <math>A in  $L^p(\Omega)$  by

$$D(\Lambda) = W_0^{1, p}(\Omega) \cap W^{2, p}(\Omega) \cap D(\overline{\beta}),$$
  

$$\Lambda u = -\Delta u + \overline{\beta}(u) \text{ for } u \in (\Lambda).$$

Then  $\Lambda$  is m-accretive.

It is well known that  $-\Delta$  with the domain  $W_0^{1,p}(\Omega) \cap W^{2,p}(\Omega)$  is maccretive in  $L^p(\Omega)$ .

Proof of Theorem 2. As in the proof of Lemma 1 we can assume that  $\beta(0) \ni 0$ . Let f be an arbitrary element of  $L^p(\Omega)$  and let  $u_{\varepsilon}(\varepsilon > 0)$  be the unique solution of the equation:  $u_{\varepsilon} - \Delta u_{\varepsilon} + \bar{\beta}_{\varepsilon}(u_{\varepsilon}) = f$ . Then

(3.1) 
$$(u_{\epsilon}, F(\bar{\beta}_{\epsilon}(u_{\epsilon}))) + (-\Delta u_{\epsilon}, F(\bar{\beta}_{\epsilon}(u_{\epsilon}))) + \|\bar{\beta}_{\epsilon}(u_{\epsilon})\|^{2} \leq \|f\| \cdot \|\bar{\beta}_{\epsilon}(u_{\epsilon})\|.$$
  
Since  $F(v) = v|v|^{p-2}/\|v\|^{p-2}$  for  $v \in L^{p}(\Omega) \setminus \{0\}$ , we have (3.2)  $(u_{\epsilon}, F(\bar{\beta}_{\epsilon}(u_{\epsilon}))) \geq 0.$ 

Next we shall show that

$$(3.3) \qquad (-\Delta u_{\scriptscriptstyle \epsilon}, F(\bar{\beta}_{\scriptscriptstyle \epsilon}(u_{\scriptscriptstyle \epsilon}))) \geq 0.$$

Let  $\{u_{\centerdot}^{(N)}\}_{N\geq 1}\subset \mathcal{D}(\Omega)$  be a sequence such that  $\lim \|u_{\centerdot}^{(N)}-u_{\centerdot}\|=0$  and define a sequence  $\{\varphi_{(\nu)}\}_{\nu\geq 1}$  of monotone non-decreasing Lipschitz continuous functions on R by the following:

(i) If 
$$2 ,  $\varphi_{(n)}(s) = s |s|^{p-2}$   $(s \in R)$ .$$

(i) If 
$$2 \le p < +\infty$$
,  $\varphi_{(\nu)}(s) = s |s|^{p-2}$   $(s \in R)$ .  
(ii) If  $1 ,  $\varphi_{(\nu)}(s) = \begin{cases} s/|\nu|^{p-2} & (|s| \le 1/\nu) \\ s |s|^{p-2} & (|s| > 1/\nu) \end{cases}$ .$ 

Then we can easily obtain that

 $(-\Delta(I-\lambda\Delta)^{-1}u_{\epsilon}^{(N)},\overline{\varphi}_{(\nu)}(\overline{\beta}_{\epsilon}((I-\lambda\Delta)^{-1}u_{\epsilon}^{(N)})))\geq 0 \quad \text{for each } \lambda>0.$ Letting  $\nu$  tend to infinity, we have by Lebesgue's theorem that

 $(-\Delta(I-\lambda\Delta)^{-1}u_{\star}^{(N)}, F(\bar{\beta}_{\star}((I-\lambda\Delta)^{-1}u_{\star}^{(N)}))) > 0$ for each  $\lambda > 0$ .

Letting N tend to infinity and then  $\lambda$  to zero, we obtain (3.3) since F is continuous. In view of (3.1), (3.2) and (3.3), we have  $\|\overline{\beta}_{\epsilon}(u_{\epsilon})\| \leq \|f\|$ . Therefore by Lemma 1  $\Lambda$  is m-accretive. Q.E.D.

**Remark.** (i)  $\Lambda$  is also "T-accretive" (B. Calvert [2]):  $-\Lambda$  is "dispersive (s)" (Y. Konishi [8, 9]). (ii) Moreover  $-\Lambda$  satisfies  $D_3(e, 0, +\infty)$  for any non-negative constant function e (K. Sato [10]):  $\text{If we set } \varphi_e(f,g) = \lim \varepsilon^{-1}(\|(f-e+\varepsilon g)^+\| - \|(f-e)^+\|) \ \text{ for } \ f,g \in L^p(\Omega),$ then for every  $u, v \in D(\Lambda)$  with  $(u-v-e)^+ \neq 0$ ,

$$\varphi_e(u-v, x-y) \leq 0$$
 whenever  $x \in -\Lambda u, y \in -\Lambda v$ .

(iii) If  $\beta(0) \ni 0$ ,  $-\Lambda|_{L^p(Q)^+} \in K_L(L^p(\Omega)^+)$  (G. Da Prato [4]); where  $L^p(\Omega)^+$ is the cone of all non-negative elements of  $L^p(\Omega)$ .

Applying Theorem 7.1 in T. Kato [6] and Theorem B in Y. Konishi [8] to the operator  $\Lambda$  in Theorem 2, we have

Corollary 3. Assume that  $1 and <math>u_0 \in W_0^{1,p}(\Omega) \cap W^{2,p}(\Omega)$  $\cap D(\beta)$ . Then the equation

(3.4) 
$$\begin{array}{ccc} 0 \in \partial u/\partial t - \Delta u + \overline{\beta}(u) & in \ \Omega \times (0, +\infty) \\ u(x, t) = 0 & on \ \partial \Omega \times (0, +\infty) \\ u(x, 0) = u_0(x) & in \ \Omega \end{array}$$

has a unique solution  $u(x, t) \in C(0, +\infty; L^p(\Omega))$  such that  $u(x, t) \in W_0^{1, p}$  $(\Omega)\cap W^{\imath,\,p}(\Omega)\cap D(ar{eta}) \ for \ every \ fixed \ t\!\geq\! 0 \ and \ \partial u/\partial t \in L^\infty(0,\,+\infty\,;\, L^p(\Omega)).$ Moreover if  $u_1$  and  $u_2$  are solutions of (3.4) such that  $u_1(x,0) \ge u_2(x,0)$ a.e. in  $\Omega$ , then  $u_1(x,t) \ge u_2(x,t)$  a.e. in  $\Omega$  for every fixed  $t \ge 0$ .

Acknowledgement. The author wishes to express his cordial thanks to Professor S. Itô and Professor H. Fujita for their kind advices.

## References

- [1] H. Brezis, M. G. Crandall, and A. Pazy: Perturbations of nonlinear maximal monotone sets in Banach space. Comm. Pure Appl. Math., 23, 123-144 (1970).
- [2] B. Calvert: Nonlinear evolution equations in Banach lattices. Bull. Amer. Math. Soc., 76, 845-850 (1970).

- [3] M. G. Crandall and T. M. Liggett: Generation of semi-groups of nonlinear transformations on general Banach spaces (to appear in Trans. Amer. Maht. Soc.).
- [4] G. Da Prato: Somme d'applications non linéaires dans des cônes et équations d'évolutions dans des espaces d'opérateurs. J. Math. pures et appl., 49, 289-348 (1970).
- [5] T. Kato: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan, 19, 508-520 (1967).
- [6] —: Accretive operators and nonlinear evolution equations in Banach spaces. Proc. Symp. in Pure Math., 18, 138-161 (1970).
- [7] Y. Kömura: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19, 493-507 (1967).
- [8] Y. Konishi: Nonlinear semi-groups in Banach lattices. Proc. Japan Acad., 47, 24-28 (1971).
- [9] —: Nonlinear dispersive operators in Banach lattices (in preparation).
- [10] K. Sato: A note on nonlinear dispersive operators (to appear).