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1. Introduction. Throughout this paper by a space we shall
mean a T,-space, and by N the set of natural numbers. For a space
X let us consider the following conditions, where the same terminology
as in [9] will be used.

(CM): There exists a sequence {&,|n € N} of hereditarily closure-
preserving closed covers of X such that

(i) any sequence {4,} with xc A4, € &, for ne N is either here-
ditarily closure-preserving or a g-sequence at a point x of X, and

(ii) every point # of X has a g-sequence {4,} with xec¢ 4, ¢,
for ne N.

(gk) X is a quasi-k-space (Nagata [11]).

(q) X is a g-space in the sense that each point of X has a ¢-
sequence which consists of neighborhoods of x (Michael [5]).

(sst) X is semi-stratifiable (cf. Creede [2]).

(o) X is a o-space in the sense that there is a ¢-locally finite
network for X (Okuyama [13]).

As is known, (o) implies (sst) and (q) implies (gk) if X is regular
(cf. [6, Theorem 2. F. 2]), but (q) does not imply (qk) if X is Hausdorff
(cf. [6, Example 10. 11]).

The purpose of this paper is to prove the following theorems except
Theorem 1.1 which was obtained in [9] and is stated here for com-
parison.

Theorem 1.1. A regular space X is the closed tmage of a regular
M-space iff (CM) and (qk) hold.

Theorem 1.2. A Hausdorff space X is the closed image of o me-
tric space iff (CM), (gk) and (sst) (or (¢)) hold.

Theorem 1.3. A Hausdorff space X is metrizable iff (CM), (q)
and (sst) (or (a)) hold.

Theorem 1.4. A space X is an M*-space tff (CM) and (q) hold.

Theorem 1.5. A regular space X is semi-metrizadble iff (@) and
(sst) hold.

In view of Theorem 1.4, Theorem 1.3 implies Theorem 1.6 below,
which is due to Ishii and Shiraki [4] for (sst) and to Shiraki [15] for
(0)," but we shall first give a new proof of the latter and then make

1) I have heard from J. Nagata that F. Slaughter proved that a Hausdorff
space is metrizable iff it is an M-space and a os-space.
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use of it for the proof of the former.

Theorem 1.6. A Hausdorff space X is metrizable iff X is an M*-
space and (sst) (or (o)) holds.

Following Michael [6], we shall call a space X singly bi-quasi-k
(resp. countably bi-quasi-k) if for any subset F' of X (resp. any decreas-
ing sequence {F',|n € N} of subsets of X) with x € Cl F' (resp. x e Cl F,,
for n e N) there is a decreasing g-sequence {4,} at x withx ¢ CL(FN A4,)
(resp. x € C1(F,NA,)) for ne N such that every sequence {x,} with
x' ¢ A, has a cluster point inN4,. Then we have .

Theorem 1.1* ([9]). A regular space X is the closed image of o
regular M-space iff X is singly bi-quasi-k and (CM) holds.

Theorem 1.4*. A space X is an M*-space iff X is countably bi-
quasi-k and (CM) holds.

2. Basic lemmas.

Lemma 2.1. Let X be a countadbly paracompact space and f:X
—Y a closed continuous onto map. Then Bd f~'(y) is countably com-
pact for ye Y if Y is countably bi-quasi-k or a g-space.?

Proof. Let yeY. Suppose that there is a discrete closed set
{x,|n e N} with z,eBd f~'(y). Let us put G,=X—{x,|j+#n} and G,
=X—{x,|neN}. Then{G,;|¢{=0,1,--.} is a countable open cover of
X and hence has a locally finite open refinement {U,|¢=0,1, - .-} such
that U, C G, for each ¢. Then

z,eU,,yeCl(f(U,)—y) for meN.
Put F,=U{f(U)—y|i=n}. Then there is a decreasing g-sequence
{4,} at y such that ye C1(F,NA4,) forne N. Hence there are distinct
points ¥y, of Y with k(n) € N, such that
Yemy € (fWrm)—mN Ay and kEm)<k(n+1) for neN,
where we put k£(0)=0.

Then {y;.} has a cluster point but this is a contradiction since
{Ugm} is locally finite. This proves Lemma 2.1.

Lemma 2.2. Let X be a space satisfying (CM). Then there exist
a metric space B, an M-space S which is a closed subset of Bx X, and
o continuous onto map f: S—X such that

(i) f s a closed map or a closed map with Bd f~(x) countably
compact for each point x of X according as

(a) (qk) holds, or

() X is countably bi-quasi-k or a g-space;

(i) S is paracompact in case every countably compact closed sub-
set of X is compact.

Proof. Define, exactly as in the proof of [9, Theorem 3.1 and
Proposition 5.2], a metric space B, an M-space SCBX X and a map

2) Cf. Michael [6, Theorem 9.1].
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f:S—X; we shall use the same notation as there except that ¥ and X
there are replaced here by X and S.

Take a closed subset 4 of X and let x, € Cl f(4)— f(4). Then we
can find indices a, € 2, for n ¢ N such that for every ne N,

#ye CLIAANB@, - - a) X X[ Fuaye

Assume that X is countably bi-quasi-k or a g¢-space. Then there is a
decreasing g-sequence {4,} at x, such that

2,e ClfANB(ay, -+, a,) xX)NA,] for meN.
Since X is T,, there are distinct points z, € X, n ¢ N, such that

T € f(A n (B(aly ] an)xX)) nAnCFnan°

Then {x,} has a cluster point and hence {F,,,|n e N} must be a g-
sequence at x,. Hereafter, similarly as before, we can conclude that
f is a closed map. In this case by Lemma 2.1 Bd f~'(x) is countably
compact for each point x of X since an M-space is countably para-
compact (cf. [3]). The other assertions were proved in [9], and so this
completes the proof.

3. Proof of Theorems 1.4 and 1.4*. The “‘only if’’ part follows
from the definition of M*-spaces and the ‘‘if’’ part is a direct conse-
quence of Lemma 2.2.

4. Proof of Theorem 1.6. The “‘only if’’ part is obvious. Sup-
pose that X is an M*-space and that (sst) or (¢) hold. Since every
countably compact space satisfying (sst) or (¢) is compact (cf. Creede
[2]), in the present case the space S in Lemma 2.2 is paracompact and
Hausdorff. Since S is semi-stratifiable (or a o-space), so is SxS.
Hence S is metrizable by Okuyama [12] and Borges [1]. Hence by
Stone [14] and Morita-Hanai [8] X is metrizable.

5. Proof of Theorem 1.2. Since the closed image of a semi-
stratifiable space is semi-stratifiable by Creede [2, Theorem 3.1] (for
the case of g-spaces, cf. Okuyama [13]), the “‘only if’’ part is a direct
consequence of Theorem 1.1. To prove the ¢if’’ part, suppose that X
satisfies conditions (CM), (gk) and (sst) (or (¢)). Then the space S in
Lemma 2.2 satisfies (sst) or (¢) in the present case. Therefore by
Theorem 1.6 S is metrizable. This completes the proof in view of
Lemma 2.2.

6. Proof of Theorem 1.5. Suppose that X satisfies (q) and (sst).
Let x be a point of X. Then there is a g-sequence {U,|n € N} of open
neighborhoods of x such that N{U,|ne N}=« and C1U,,,CU, for
neN. Clearly {U,} is a basis for neighborhoods at #. Hence X is
first-countable. Therefore by Creede [2, Corollary 1.4] X is semi-
metrizable. The ‘‘only if’’ part follows also from the same result of

[2].
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7. Proof of Theorem 1.3. Theorem 1.3 is now a direct conse-
quence of Theorems 1.4 and 1.6.

8. Remarks. (1) Theorems 1.8 and 1.6 and the ‘‘if’’ part of
Theorem 1.2 remain true if we replace (sst) (or (¢)) by any topological
property (P) such that (a) every metric space has (P), and (P) is pre-
served under taking closed subsets and products with metric spaces;
(b) a countably compact Hausdorff space with (P) is compact; (¢) a
paracompact Hausdorff M-space with (P) has a G,-diagonal. This is
obvious from §§ 4,5 and 7. As an example of such a property (P) we
can mention the property of a space having a point-countable pseudo-
base (=separating open cover) (cf. Shiraki [15] and Michael-Slaughter
[16]).

(2) A space X satisfying (CM) is a P-space in the sense of [10].
Because, if {G(ay, ---,a)|a; e 2,j=1,...,1; i€ N} is a family of open
sets of X such that G(«,, - - -, ;) CG(ay, - - -, @3, &), then for the family
(F(a,, - -, a,)} of F -sets defined by

F(an s ',ai)z U{Fe U%anCG(al’ c ‘7“1:)},
X=Upr,Glay, - -, a;) implies X=J2, F(a,, - - -, ;) (indeed, if {4,} is
a g-sequence at z in condition (CM) and if N4,CG(«,, - - -, ;) then we
have A,CG(a,, - - -, ;) for some 7 € N).

References

[1] Borges, C.J. R.: Stratifiable spaces. Pacific J. Math., 17, 1-16 (1966).

[2] Creede, G. D.: Concerning semistratifiable spaces. Pacific J. Math., 32,
47-54 (1970).

[31 Ishii, T.: On wM-spaces. I. Proc. Japan Acad., 46, 5-10 (1970).

[4]1 Ishii, T., and Shiraki, T.: Some properties of wM-spaces. Proc. Japan
Acad., 47, 167-172 (1971).

[5] Michael, E.: A note on closed maps and compact sets. Israel J. Math., 2,
173-176 (1964).

[6] Images of certain quotient maps (to appear).

[7] Morita, K.: A survey of the theory of M-spaces. General Topology and
its Applications, 1, 49-556 (1971).

[8] Morita, K., and Hanai, S.: Closed mappings and metric spaces. Proc.
Japan Acad., 32, 544-548 (1956).

[9]1 Morita, K., and Rishel, T.: Results related to closed images of M-spaces.
I, IT (to appear).

[10] Morita, K.: Products of normal spaces with metric spaces. Math. Ann.,
154, 365-382 (1964).

[11] Nagata, J.: Quotient and bi-quotient spaces of M-spaces. Proc. Japan
Acad., 45, 25-29 (1969).

[12] Okuyama, A.: On metrizability of M-spaces. Proc. Japan Acad., 40, 176—
179 (1964).

[18] ——: A survey of the theory of o-spaces. General Topology and its
Applications, 1, 57-63 (1971).

[14] Stone, A. H.: Metrizability of decomposition spaces. Proc. Amer. Math.
Soc., 7, 690-700 (1956).




20 K. MoRrITA [Vol. 48,

[15] Shiraki, T.: M-spaces, their generalizations and metrization theorems. Sci.
Rep. Tokyo Kyoiku Daigaku, Sect. A, 11, 57-67 (1971).

[16] Michael, E., and Slaughter Jr., F.: Y-spaces with a point-countable separat-
ing open covers are o-spaces (to appear).



