No. 7]

109. Structure of Left QF-3 Rings

By Toyonori KATO

College of General Education, Tohoku University, Kawauchi, Sendai

(Comm. by Kenjiro SHODA, M.J.A., Sept. 12, 1972)

The purpose of this note is to establish a structure theorem for left QF-3 rings, an analogue to one for QF-3 algebras by Morita [14], introducing a new notion of left QF-3 rings.

It turns out that not only faithful projective-injective modules but also dominant modules play a vital role in the structure theory of left (-right) QF-3 rings.

Throughout this note, rings R and S will have identity and modules will be unital. ${}_{s}X$ will signify the fact that X is a left S-module. We adopt the notational convention of writing module-homomorphism on the side opposite the scalars.

Definition (Kato [10]). A module P_R is called dominant if P_R is faithful finitely generated projective and ${}_{s}P$ is lower distinguished¹ with $S = \text{End}(P_R)$.

The following definition of left QF-3 rings finds no mention in the literature.

Definition. A ring R will be called left QF-3 if R contains idempotents e and f such that Re is a faithful injective left ideal and fR is a dominant right ideal.

Lemma 1^{2} . If e and f are idempotents of R such that _RRe is injective and fR_R is faithful, then

(1) $Re = \operatorname{Hom}_{(fRf}fR, f_{Rf}fRe)$, so $eRe = \operatorname{End}_{(fRf}fRe)$.

(2) $_{fRf}fRe$ is injective.

Proof. This is Proposition 2.1 of Tachikawa [25].

Lemma 2. The double centralizer of any faithful torsionless right R-module is a left quotient³ ring of R.

Proof. See Colby and Rutter [3, 4], Tachikawa [25], Faith [5], and Kato [11].

Lemma 3. Let $_{s}V$ be a cogenerator and $T = \text{End}(_{s}V)$. Then $_{s}V$ is linearly compact if and only if V_{T} is injective; then a module $_{s}U$ is linearly compact if and only if $_{s}U$ is V-reflexive.

2) Cf. Kato [13].

¹⁾ $_{S}P$ is lower distinguished if $_{S}P$ contains a copy of each simple module. Cf. Azumaya [1].

³⁾ Q is a (the maximal) left quotient ring of R if Q is a ring extension of R and $_{R}Q$ is a (the maximal) rational extension of $_{R}R$. Cf. Findlay and Lambek [6].

Proof. This is Corollaries 1 and 2 of Onodera [19]. Cf. Müller [17] or Sandomierski [23].

Lemma 4. Let P_R be a dominant module. Then $E(R_R)$, the injective hull of R_R , is torsionless if and only if P_R is injective.

Proof. This is Lemma 1 of Kato [12]. Cf. Onodera [18].

Structure theorem. Let S be a ring, ${}_{s}V$ an injective cogenerator, ${}_{s}U = {}_{s}V \oplus_{s}X = {}_{s}S \oplus_{s}Y$

with the projections $e: {}_{s}\mu \rightarrow {}_{s}V, {}_{s}U \rightarrow {}_{s}S$, and $Q = \text{End}({}_{s}U)$. Let R be a subring of Q containing 1, Qe and fQ. Then ${}_{R}Re$ is faithful injective and fR_{R} is dominant; R is thus a left QF-3 ring. Conversely, any left QF-3 ring R (containing idempotents e and f such that ${}_{R}Re$ is faithful injective and fR_{R} is dominant) is just obtained in this manner. Moreover,

(1) Q is not only the maximal left, but also a right quotient ring of R, and R=Q if and only if dom⁴⁾ $_{R}R \ge 2$.

(2) $_{R}Re$ is dominant if and only if V_{T} is lower distinguished with $T = \text{End}(_{S}V)$.

(3) fR_R is injective if and only if ${}_{s}U$ is linearly compact.

Proof. The module U forms a ring (not necessarily with identity) under a multiplication

(s+y)u=su for $s \in S$, $y \in Y$, $u \in {}_{S}U$.

Clearly U is a right faithful ring and an S-U-bimodule, so U is a subring of Q. It now follows from the identification $U \subset Q$ that

U=fQ, S=fQf, V=fQe.

Thus ${}_{fRf}fRe = {}_{fQf}fQe = {}_{s}V$ is an injective cogenerator and $R \subset Q$ = End $({}_{s}U)$ = End $({}_{fQf}fQ)$ = End $({}_{fRf}fR)$, so ${}_{fRf}fRe \subset {}_{fRf}fR$ is a cogenerator (so necessarily lower distinguished) and fR_{R} is faithful. Hence fR_{R} is dominant. On the other hand, since Q = End $({}_{fRf}fR)$ and ${}_{fRf}fRe$ is injective,

$$_{R}Re = _{R}Qe = _{R}Hom(_{fRf}fR, _{fRf}fRe)$$

is injective by Cartan and Eilenberg [2, Proposition 1.4, p. 107]. Moreover, $_{fRf}fR \subseteq \prod_{fRf}fRe$ (recall that $_{fRf}fRe$ is a cogenerator) whence

 $_{R}R \subset _{R}Q = _{R}\operatorname{Hom}\left(_{fRf}fR, _{fRf}fR\right) \subset \prod_{R}\operatorname{Hom}\left(_{fRf}fR, _{fRf}fRe\right) = \prod_{R}Re$, so $_{R}Re$ is faithful. We thus conclude that R is a left QF-3 ring.

Conversely, let R be a left QF-3 ring with idempotents e and f such that $_{R}Re$ is faithful injective and fR_{R} is dominant. Let

 $S = fRf, \quad {}_{S}V = {}_{fRf}fRe, \quad {}_{S}U = {}_{fRf}fR,$ ${}_{S}X = {}_{fRf}fR(1-e), \quad {}_{S}Y = {}_{fRf}fR(1-f), \quad Q = \operatorname{End}({}_{S}U),$

then

$$_{s}U = {}_{s}V \oplus_{s}X = {}_{s}S \oplus_{s}Y$$

with the projections $e: {}_{s}U \rightarrow {}_{s}V$ and $f: {}_{s}U \rightarrow {}_{s}S$ (since fR_{R} is faithful). By Lemma 1 ${}_{s}V = {}_{fRf}fRe$ is injective. Moreover, ${}_{R}R \subseteq \prod {}_{R}Re$ (since

⁴⁾ Cf. Tachikawa [25] or Kato [9].

 $_{R}Re$ is faithful) whence

 $_{fRf}fR = _{fRf}\text{Hom}(_{R}Rf,_{R}R) \subseteq \prod_{fRf}\text{Hom}(_{R}Rf,_{R}Re) = \prod_{fRf}fRe$, so $\prod_{s}V = \prod_{fRf}fRe$ is an injective cogenerator (recall that fR_{R} is dominant) by Osofsky [20, Lemma 1], and hence, so is $_{s}V$ by Sugano

[24, Lemma 1]. Now, R is a subring of Q since fR_R is faithful, fR = fQ since $Q = \text{End}(_{fRf}fR)$, and Re = Qe by Lemma 1.

(1) Since Q is the double centralizer of the dominant right ideal fR, Q is a left quotient ring of R by Lemma 2 and

dom. dim
$$_QQ \ge 2$$

according to Kato [9, Theorem 2] (recall that $_{fRf}fR$ is a generatorcogenerator). Hence Q is the maximal left quotient ring of R by Tachikawa [25, Proposition 1.3]. On the other hand, since $_QQe$ is faithful and Qe=Re,

$$Q \subset \operatorname{End}\left(Qe_{eQe}\right) = \operatorname{End}\left(Re_{eRe}\right)$$

is also a right quotient ring of R in view of Lemma 2. Now, R=Q if and only if dom. dim $_{R}R \ge 2$ again by Tachikawa [25, Proposition 1.3].

(2) By Lemma 1

 $T = \operatorname{End}({}_{s}V) = \operatorname{End}({}_{fRf}fRe) = eRe.$

If $_{R}Re$ is dominant, then

$$Re_{eRe} \subseteq \prod fRe_{eRe} = \prod V_T$$

(since fR_R is faithful) is lower distinguished, and hence, so is V_T . Conversely, if V_T is lower distinguished, then

$$V_T = fRe_{eRe} \subset Re_{eRe}$$

is lower distinguished, so $_{R}Re$ is dominant (since $_{R}Re$ is faithful).

(3) Let

$$T = \operatorname{End}(_{S}V) = \operatorname{End}(_{fRf}fRe) = eRe$$

If fR_R is injective, it then follows from Lemma 1 that $fR = \text{Hom}(Re_{eRe}, fRe_{eRe})$

and $V_T = fRe_{eRe}$ is injective. According to Lemma 3, ${}_{s}U$ is thus linearly compact, since ${}_{s}U = {}_{fRf}fR$ is V-reflexive. Conversely, if ${}_{s}U$ is linearly compact, then so is ${}_{s}V$ (since ${}_{s}V$ is a submodule of ${}_{s}U$). Hence fRe_{eRe} $= V_T$ is injective and ${}_{fRf}fR = {}_{s}U$ is fRe-reflexive by Lemma 3. Thus

$$fR_{R} = \text{Hom} (\text{Hom} (_{fRf}fR, _{fRf}fRe)_{eRe}, fRe_{eRe})_{R}$$

= Hom (Re_{eRe}, fRe_{eRe})_R

is injective.

Corollary 1.⁵⁾ Let S be a ring with a Morita duality⁶⁾ ${}_{s}V,$ ${}_{s}U = {}_{s}V \oplus_{s}X = {}_{s}S \oplus_{s}Y$

a V-reflexive module with the projections $e: {}_{s}U \rightarrow {}_{s}V$ and $f: {}_{s}U \rightarrow {}_{s}S$, and $Q = \text{End}({}_{s}U)$. Let R be a subring of Q containing 1, Qe and fQ.

5) Cf. Morita [14] or Morita and Tachikawa [15].

No. 7]

⁶⁾ ${}_{S}V$ is a Morita duality if ${}_{S}V$ and V_{T} are injective cogenerators with $T = \text{End}({}_{S}V)$ and $S = \text{End}(V_{T})$. Cf. Sandomierski [22].

Then _RRe and fR_R are injective dominant; R is thus a left-right QF-3 ring. Conversely, any left-right QF-3 ring R (containing idempotents e and f such that _RRe and fR_R are dominant) is just obtained in this manner. Moreover, Q is the maximal left-right quotient ring of R.

Proof. From the preceding arguments, $_{R}Re$ and fR_{R} are injective dominant. Conversely, let R be a left-right QF-3 ring with idempotents e and f such that $_{R}Re$ and fR_{R} are dominant. According to Lemma 4, the dominant modules $_{R}Re$ and fR_{R} are injective since R is left-right QF-3. From the preceding arguments again, it now follows that $_{fR_{f}}fRe$ and fRe_{eRe} are injective cogenerators and

 $Re = \operatorname{Hom}\left(_{fRf}fR, _{fRf}fRe\right)$, so $eRe = \operatorname{End}\left(_{fRf}fRe\right)$,

 $fR = \operatorname{Hom}(Re_{eRe}, fRe_{eRe}), \text{ so } fRf = \operatorname{End}(fRe_{eRe}).$

Thus ${}_{s}V = {}_{fRf}fRe$ is a Morita duality and ${}_{s}U = {}_{fRf}fR$ is V-reflexive. Finally, Q is the maximal left-right quotient ring of R (cf. Colby and Rutter [4] and Müller [16]).

Definition. A subring S of R will be called left dominant if S = fR f with $fR (f = f^2 \in R)$ a dominant right ideal.

Corollary 2. (1) Any ring (with 1) is a left dominant subring of a left QF-3 ring.

 $(2)^{r_1}$ S is a ring with a left Morita duality if and only if S is a left dominant subring of a left-right FQ-3 ring.

Example. Any minimal faithful⁸⁾ module P_R is dominant (see Colby and Rutter [3, Theorem 1], Fuller [7, Theorem 2.1] and Kato [13, Theorem 4]).

References

- G. Azumaya: Completely faithful modules and self-injecitve rings. Nagoya Math. J., 27, 697-708 (1966).
- [2] H. Cartan and S. Eilenberg: Homological Algebra. Princeton Univ. Press, Princeton, N. J. (1956).
- [3] R. R. Colby and E. A. Rutter, Jr.: QF-3 rings with zero singular ideal. Pacific J. Math., 28, 303-308 (1969).
- [4] ——: A remark concerning QF-3 rings (to appear).
- [5] C. Faith: A correspondence theorem for projective modules and the structure of simple noetherian rings. Bull. Amer. Math. Soc., 77, 338-342 (1971).
- [6] G. D. Findlay and J. Lambek: A generalized ring of quotients. I, II. Canad. Math. Bull., 1, 77-85, 155-167 (1958).
- [7] K. R. Fuller: The structure of QF-3 rings. Trans. Amer. Math. Soc., 134, 343-354 (1968).
- [8] J. P. Jans: Projective injective modules. Pacific J. Math., 9, 1103-1108 (1959).
 - 7) Cf. Roux [21].

8) P is minimal faithful if P is faithful and is a direct summand of each faithful module. Cf. Thrall [26] or Jans [8].

 [9] T. Kato: Rings of dominant dimension ≥1. Proc. Japan Acad., 44, 579-584 (1968).

- [10] ——: Dominant modules. J. Algebra, 14, 341-349 (1970).
- [11] ——: U-dominant dimension and U-localization (unpublished).
- [12] ——: Rings having dominant modules. Tohoku Math. J., 24, 1–10 (1972).
- [13] ——: U-distinguished modules (to appear in J. Algebra).
- K. Morita: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 6, No. 150, 83-142 (1958).
- [15] K. Morita and H. Tachikawa: QF-3 rings (unpublished).
- B. J. Müller: Dominant dimension of semi-primary rings. J. reine angew. Math., 232, 173-179 (1968).
- [17] ——: Linear compactness and Morita duality. J. Algebra, 16, 60-66 (1970).
- [18] T. Onodera: Koendlich erzeugte Moduln und Kogeneratoren (to appear).
- [19] —: Linearly compact modules and cogenerators. J. Fac. Sci. Hokkaido Univ., 22, 116–125 (1972).
- [20] B. L. Osofsky: A generalization of quasi-Frobenius rings. J. Algebra, 4, 373-387 (1966).
- [21] B. Roux: Sur la dualité de Morita. Tohoku Math. J., 23, 457-472 (1971).
- [22] F. L. Sandomierski: On QF-3 rings (to appear).
- [23] ——: On linearly compact modules and rings (to appear).
- [24] K. Sugano: A note on Azumaya's theorem. Osaka J. Math., 4, 157–160 (1967).
- [25] H. Tachikawa: On left QF-3 rings. Pacific J. Math., 32, 255-268 (1970).
- [26] R. M. Thrall: Some generalizations of quasi-Frobenius algebras. Trans. Amer. Math. Soc., 64, 173-183 (1948).

No. 7]