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1. Introduction and main results.
Let X be a locally compact Hausdorff space with a countable base

and m be a positive Radon measure on X. Let M--(X, P, ) be an m-
symmetric standard process on X. Throughout this paper we make
the following assumption"

(A) The measure m is a reference measure for M.
By virture of (A) and the symmetry of M, it follows from Theorem 1.4
in [1 Chap. 6] that M is self-dual in the sense of [1 Chap. 6]. Further
polarity and semipolarity of a set are equivalent (Proposition 4.10 in
[1; Chap. 6]). Hence every fine Borel set is nearly Borel because under
(A) every fine Borel set is the union of a Borel set and a semipolar set
([1 Chap. 5]).

The expression "q.e." will mean "except on a polar set’". A func-
tion u defined q.e. on X is called q.e. finely continuous if there exists a
nearly Borel polar set B such that u is finely continuous on X--B.
Denote by (X, m, ,) the Dirichlet space generated by the m-sym-
metric resolvent {G.,>0} of M in the sense of Fukushima [2; 2].
Our main results are the following.

Theorem 1. Every function in fff has a q.e. finely continuous

modification" for every u , there exists a q.e. finely continuous func-
tion u* such that u*-u m-a.e.

Denote by * the set of all q.e. finely continuous modifications of
functions of . For cache>0, set C.(u, v)--(u, v)+(u, v) foru, v e ,
where (u, v) denotes the inner product in L--L(X, m).

Theorem 2. If {un} is a Cauchy sequence in the Hilbert space
(*, 1), then there exists a subsequence which converges q.e. on X to
a function u e *. Furthermore {un} converges to u with l-norm.

For a finely open set A, let
_-{u e ; u>l m-a.e, on A}(i.i)

and define
(1.2) cap (A)-- inf ’(u, u) if

For any subset B of X, define
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(1.3) cap (B) in cap (A).
BcAA: finely open

We call cap (B) the fine capacity of B. The fine capacity is a non-.
negative, countably subadditive Choquet capacity with respect to the
fine topology. This can be verified in the same manner as in [3; 2].
It is clear that any set of zero fine capacity is m-negligible. Further-
more we can assert the following.

Theorem 3. A set N is of zero fine capacity if and only if N i
polar.

If a regular Dirichlet space is firstly given, then Fukushima [3]
shows that it is generated by a certain Hunt process, establishing
further several theorems which are analogous to the present ones.
There the capacity is defined by means of open sets of the underlying
topology rather than the fine topology.

We instead start with a general standard process. We do not know
whether generally the Dirichlet space generated by the given standard
process is regular or not. However our results show that, without any
assumption of regularity, the results in [3] still hold if one passes from
the usual capacity to the fine capacity.

2. Proofs. Let ( be the class of finely open sets A such that.:/=. For every A e (, there exists a unique element p e A: mini-
mizing the quadratic form ’(u, u) in _L, which satisfies that cap (A)
=g’I(P,P), 0=<p<:l m-a.e, on X, p-I m-a.e, on A and ’l(p, v)_>_0
for every v e such as v>__ 0 m-a.e, on A (cf. [3; 1]).

Lemma 1. If A e ( there exists a 1-excessive (consequently, finely
continuous) function such that $-p m-a.e. Further we have
(2.1) 15(x)-1 for all x e A,
and
(2.2) (x)>=E(e-) for all x e X.
Here a is the first hitting time of A.

Proof. I v e L and v>=0 m-a.e., then
(p-G,+p, v)-,+(p, G,+v)-(p, G,+v)

(p, G.+v) >= 0
because o the above mentioned property of pa. Hence pa>=aG.+Ip
m-a.e, and the everywhere defined unction aG.+pa is increasing as
a-. It has the limit which is 1-excessive and equal to pa m-a.e.
The equality (2.1) ollows rom (A). The inequality (2.2) is a consequ-
ence of the equality (2.1) and Proposition 2.8 in [1; Chap. 2].

Lemma 2. Any set of zero fine capacity is polar.
Proof. If N is a set o zero fine capacity, there exists a decreas-

ing sequence (A,} in satisfying A,N and cap(A,)0. Since
cap (A)-’(15a., 15a.)>-(a., a.), lira inf 15a.-0 m-a.e. By the inequali-
ty (2.2),
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0--Ex (exp (--lim a))>=Ex (exp (--an)) m-a.e.

Therefore, by virture of (A), we see that NZ--A is polar and so is N.
Owing to the above proof, the condition (A) and Proposition 3.2 in

[1 Chap. 6], we see further that if A e _) and cap (A) $ 0, then
(2.3) E (exp (-- lim a)) 0
except on a polar set.

A function u defined except on a set of zero fine capacity is called
finely quasi-continuous if for any 0 there exists a finely open set A
such that cap (A) e and the restriction of u to X--A is finely continu-
ous. Let B be the set of all bounded Borel measurable functions.
Every function in G(L B) then is finely continuous and G(L2 B) is
dense in the Hilbert space (, ’1). Therefore, taking GI(L2 B) in place
of C(X) in [3; Theorem 1.3], we see that if u belongs to , then there
exists a finely quasi-continuous function u’ satisfying u-u’ m-a.e.

Lemma 3. A finely quasi-continuous function is q.e. finely con-
tinuous.

Proof. If u is a finely quasi-continuous function, there exists a
decreasing sequence [An} in ) such that cap (A)$ 0 and restriction of
u to X--A is finely continuous on X--A. In view of the proof of
Lemma 2 and the fact (2.3), (=An is a nearly Borel polar set and

P (lim =)-=1 except on a polar set. Let C be a nearly Borel
polar set containing the exceptional polar set. The set B=(__ (C t2 A),
is again a nearly Borel polar set.

Fix any point x of X--B. Since P (lim. av.--c)=l for every
y of X--B, P(ac,0)=I for sufficiently large n by Blumenthal’s
0-1 law. Hence for sufficiently large n, X--(C[J A) is a fine neigh-
borhood of x, which implies that u is finely continuous at x.

Proof of Theorems 1 and 2. Theorem 1 is a consequence of
Lemma 3, Theorem 2 follows from Lemma 2 and Lemma 1.2 in [3].

Now we turn to the proof of Theorem 3. For a fixed finely open

set A X, the resolvent operator GJ(x)-E’ e-(X)dt also gen-

erates a Diriehlet spaee (X, m,,).
Lemma 4. The paee i bet o ff ad i the etie-

tio o to:
(..4) ’((, )=(, v) for , .

This lemma is proved in [g 4] if A is open or closed in the under-
lying topology. It is easy to see that it is true even if A is finely open.
By means of this lemma, is a closed subspaee of the Hilbert space
(, ’). Denote by ( the orthogonal complement of ff in (, ).
Let (()* be the set of all q.e. finely continuous modifications of func-
tions of (. Denote by B the set of all bounded nearly Borel measurable
functions. We define
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--aaA(2.5) H.u(x) (e u(X.)) or u e Bn.
Lemma 5. If u e * Bn, then Hu is the projection of u on the

space (()*.
Proof (see [3; Lemma 3.4]). We only note the ollowing" By

Theorem 2, a suitable subsequence of {G.u} converges to some u’ e *
q.e. and u’-u m-a.e. We have u’--u q.e. by virture o (A). There-
2ore the subsequence converges to u q.e.

As consequences o Lemma 5, we see the following acts.
1 For every A e (C), e(x)=E(e-)(--Ex(e-$(X))) belongs to

(()* and hence to *.
2 I {An} is a decreasing sequence of sets in 2, then {e,} is a

Cauchy sequence with ’-norm.
The next lemma combined with Lemma 2 completes the proof o

Theorem 3.
Lemma 6. A polar set N is of zero fine capacity.
Proof. We may assume that N is nearly Borel. Moreover, if N

is compact, there exists a bounded continuous unction f e L which is
larger than 1 on N. Then N={x;nGnf(x)l} and each set
{x; nGf(x) 1} belongs to (. Since the space X is a-compact, it su-
rices to consider the case that N is a nearly Borel polar set whose fine
capacity is finite. Let h be a strictly positive unction in LI(X, m) and

set h.m(E)--[ h(x)m(dx). Then there exists a decreasing sequence
J

{An} O sets in ( such that AnON and a’a P.-a.s., consequently

a. $ P.-a.s. Therefore,

]lim e(x)h.m(dx)-lim E. (exp (-))--0.
Hence lim e(x)--O m-a.e. Then by the above act 2 and Theorem
2, {e} converges to 0 with g’-norm. Since e-1 on An, we see that

cap (N) =<lim cap (An) =<lim ’(e., e.)- O.
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