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149. On Quasi.primality of Submodules
and of Ideals in Rings

By Hisao IZUMI
Ube Technical College

(Comm. by Kenjiro SHODA, M. J. A., Nov. 13, 1972)

W. E. Barnes [1] has given for rings a theory of the representation
of an ideal as an intersection of primal ideals, and showed that, in any
short reduced representation of an ideal by primal ideals with prime
adjoints, the adjoints and the number of primal components are uni-
quely determined. As is well-known, in that case there exist no con-
tainment relations among the prime adjoints. In order to generalize
the above results, we shall consider a representation of a submodule
by quasi-primal submodules, and as a special case we obtain that any
two short reduced representations of an ideal by primal ideals have the
same number of primal components and the same McCoy’s radicals of
their adjoints in pairs, if there exist no containment relations among
the McCoy’s radicals of the adjoints of primal components.

Throughout this note, R is a noncommutative ring whose unity
does not necessarily exist, and M is a right R-module. The term ideals
mean two-sided ideals, and (x) means the principal ideal by an element
x of R. For a subset S of R, we set S-{x e R (x)S for some posi-
tive integer n}, and set S-, {PIP is a prime ideal and P,S}.
Hence S is an ideal. For convenience, even if a subset S of R is not
an ideal, S is called the McCoy’s radical of S. For all ordinal numbers
we define S by induction as follows" (’-, if is not a limit

ordinal then S( -S(-’, and if is a limit ordinal then S(-< S(.
Definition 1. Let S be a subset of R. If S(’) is an ideal for some

ordinal number c, S is called a quasi-ideal.

Definition 2. A submodule N of M is called a primal submodule
if its ad]oint subset N-{xeRIN xN} is an ideal, where N’x
means the submodule {m e M ImRxN}. A submodule N of M is called
a quasi-primal submodule if the adjoint subset N is a quasi-ideal.
Evidently a primal submodule is quasi-primal.

Lemma 1. If an ideal A of R is contained in the set-union of
finitely many semi-prime ideals Q,, then A is contained in one of the Q,.

Proof. Suppose that A Q for every i, then there exist prime
ideals P, such that P,Q and P,;A. Hence A?=Q,,\P.
This contradicts the well-known McCoy’s result.
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From [2], we obtained the ollowing"
Lemma 2. For an ideal A, A-A if and only if A-A.
Lemma 3. For subsets B,C o.f R,B implies tha$B for

any ordinal number .
Proof. Suppose that (x)B or some positive integer n. Since

BC-- {PIP is prime}, (x)P or every i, hence ()P. Thus we
have B. We shall prove the lemma by induction as ollows" I
is not a limit ordinal, we have B-B-C-C, and ff is a limit
ordinal, we have B") --<B).

Lemma 4. For a quasi-ideal A of R, there exists an ordinal
number sucn that A(")-A.

Proof. By Lemma 3 (r) or each ordinal number ’. Since
the _(r) are well ordered and the set-union of every subset of them is
again an _(, by Zorn’s Lemma they are all contained in a maximal
one, A(". On the other hand, since A is a quasi-ideal we may suppose

that ](" is an ideal and that (/)-]"). Hence by Lemma 2, A")

A(") A. Thus we obtain A(") A.
Corollary. For any ideal A of R, - for some ordinal

number .
Now for any subset S of R, we set : to be the set-union of 3 for

all ordinal numbers .. Similarly to the proof of Lemma 4, we have
:--S( for some ordinal number .

Lemma ;. For finitely many quasi-ideals Q, let S-Q U U Qn,
then --()-- U U for some ordinal number .

Proof. Suppose that (x)SOU Un, then by Lemma
(x)n for some i, hence x e (x)Q. Thus we haveSU... U.
We shall prove the lemma by induction as follows" If , is not limit

ordinal, S() -S(-’( U U (. Now repeating the above demon-

stration, we obtain Q [A (n___Q [_J [-J Q-Q @... U Qn. If y is

a limit ordinal, S()-<S()( U U n. Conversely, for any

ordinal number , and for any Q,S()). By Lemma 4, ()Q for

some ordinal number . Thus we obtain :(:U... U ). Hence
=Q U... U Q for some ordinal number a.

Definition 3. A representation
(1) N--NI’"Nn
of submodule N of M as the intersection o submodules N of M is called
reduced i no N can replaced by a proper large submodule. I (1) is

a reduced representation o N by quasi-primal submodules N, and is

such that N N is not quasi-primal if i=/= j, it is called a shor reduced
representation of N by quasi-primal submodules.

Theorem 1. Let N-Q Q be a reduced representation of
a submodule N of M by quasi-primal submodules. For an ideal A of
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R,A if and only if A? for some i.
Proof. By the definition of the reduced representation, we obtain

N-Q[ [3 U Q and every Q is a quasi-ideal. Hence by Lemma 5,
/--U U(. Thus for any ideal A,A if and only if A(
for some i by Lemma 1.

Theorem 2. Let
(1) N-Qn...nQn
be a reduced representation of a submodule N of M by quasi-primal
submodules, then N has a short reduced representation by quasi-primal
submodules such that there exist no containment relations among the

Proof. If there exist Q, and Q such that QQ, set Q-Q, Q.
Since (1) is reduced, Q-Q,Q is reduced. By Lemma 5
U-( for some ordinal number a. Since ( is an ideal, Q is quasi-
primal. Conversely if there exist no containment relations among the
(?, set Q-Qil "" Qi for any Q,,, ..., Q,,. Again we obtain
), J... U (,L by Lemma 5. If Q is quasi-primal, by Lemma 4-(

is an ideal. Hence by Theorem 1 we may assume that _(, and for
any i (,)(,, which is a contradiction.

Corollary. Let
(2) N-Q (Q
be a reduced representation by quasi-primal submodules. Then (2) is

a short representation if and only if there exist no containment rela-
tions among Q..

Theorem 3. In any short reduced representation of submodule
N by quasi-primal submodules, the McCoy’s radicals of adjoints and
the number of quasi-primal components are uniquely determined.

Proof. Let N=Q ( ( Qn-P P be any two represen-
tation of N by quasi-primal submodules. For each i ?, and by
Theorem 1 there exists ] such that Q?P. Similarly we obtain

/( for some k. Hence we have n-m and for any i (--P for
some order.

Corollary. In any short reduced representation of N by primal
submodules such that there exist no containment relations among the
McCoy’s radicals of their ad]oints, then the McCoy’s radical of ad]oints
and the number of primal components are uniquely determined.

Proof. By Corollary to Theorem 2 and Theorem 3.
Now, especially let N be an ideal of R, the corollary is a generali-

zation of Theorem 5, mentioned in the introduction, of W. E. Barnes
[1].

At last, we shall show that a quasi-primal submodule is primal if

the following condition holds"
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Axiom D of L. Lesieur and R. Croisot [3]--The sets of right
residues and left residues of all submodules o M satisfies the ascending
chain condition.

Theorem 4. If axiom D holds, then a quasi-primal submodule N
is primal.

Proof. Let N be a quasi-primal submodule. By Theorem 4.1 of
[3], we obtain a short reduced representation, in the sense of [3],
N-Q ... Q by primal submodules with prime adjoints such that
there exist no containment relations among Q?. Hence we have
N-Qtj...Q, and by Lemma 5 -QtJ...tJQ. Since N is
quasi-primal is an ideal. Thus by Lemma 1 n-l, hence N is
primal.
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