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145. Amnalogue of Fourier’s Method
for Korteweg - de Vries Equation

By Shunichi TANAKA
Department of Mathematics, Osaka University

(Comm. by Kosaku Yo0SIDA, M. J. A., Nov. 13, 1972)

1. Introduction. In this paper we study the Korteweg -
de Vries (KdV) equation
(1) Uy —6UU, + Uy, =0 u=u(t) =u(xr, t) — co <, t oo
for rapidly decreasing initial data. Gardner, Greene, Kruskal and
Miura (G.G.K.M.) [2] have associated one dimensional Schrodinger
operators L, ,,= —(d/dx)*+u(t) to a solution of (1). They have found
a simple formula describing the time variation of scattering data of
L,;,. This paper is concerned with converse statement which may be
viewed as a non-linear analogue of Fourier’s method for solving linear
partial differential equations of mathematical physics: Given the initial
value one determine the scattering data of L, ,. Define scattering data
for each t according to the formula of G.G.K.M. Using inverse
scattering theory, one can construct potential u(x,t) with prescribed
scattering data for each £. Then u(x, t) is a solution of (1).

Throughout the paper subscripts with independent variables denote
partial differentiations. Integrations are taken over (—oco, o) unless
explicitly indicated.

2. Preparation from scattering theory. Consider one dimen-

sional Schrodinger equation
(2) — Goa +U(@)P=L70.
Under the assumption that (1+|z)u(x) is integrable, the inverse scatter-
ing theory for (2) has been solved by Marchenko for the half line (0, co)
and then the case of the infinite interval has been treated by Faddeev
[11. We follow [1] in this paper.

For each {=¢&+1y,7>0, there exist unique solutions f.(z, %) which
behave like exp (+¢x) as x— + co. They are called Jost solutions of
(2). Jost solutions are analytic in {, Im&>0. If {=¢& non-zero real,
then f, and its complex conjugate /* are independent solutions of (2).
One can express f_ as f_=a&) f*+b(8)f,. a(f) is limiting value of a
function a({) analytic in ¢, Im ¢>0. The (right) reflection coefficient
(&) =b(&a(é)! is defined for £+£0 and its absolute value is bounded by
1. a(®) has only a finite numbers of zeros. They are all simple and
purely imaginary. We denote them by iy, ---,ipy. f. are linearly
dependent for { =1z, and are square integrable because of the asymptotic
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property. Put ¢;j'= f S, ip,)’dx. The triplet s={r(¢),5;, ¢;} is called

the scattering data of the potential u. The coefficients a() and b(¢) in
turn can be uniquely reconstructed by the scattering data.
Put k. (x,)=exp (Filx) f.(x,8). Then h, are expressed as

B+) h.(z, c>=1if:°°Bi<x, V) exp (& 2ity)dy.
Coefficients a() and b(¢) have the following integral representations:
(@) =1— i) [u) dy——(zio-lj:m(y) exp (2iLy) dy

II,(y)=|\u(x)B_(x, —y)dx
b(e) = (2is)-ljnl<y) exp (—2iy)dy

11, (y) =uy) +I:u(x)B_(x, y—x)de.

Put
F(y) -—-ﬂ-ljr(e) exp (2i8y)de
N
(4) Q(y):*j};1 c; exp (—29,9) +F(¥).
Then B, satisfies the Marchenko equation
(5) B.(z,9)+ j “Q@-+y+9B, (@, 9ds+ 0 +1) =0

and the potential # is reconstructed by the formula
w(x) = — d B (z,0).
ox

If wisin S, Schwartz space on (— oo, c0), then B_(x, ¥) are infinitely
differentiable. All of their derivatives are dominated by functions
like a(x+7%), where a(x) is bounded, decreasing (increasing) and rapidly
decreasing as x— oo (x— —oo) for B,(B_). Infinite differentiability in
& of h.(z, 8, h.(x,8), (&) and &£b(¢) then follows. I1,(y) is in S and
II,(y) (y>0) is infinitely differentiable with each derivative rapidly
decreasing as y—co. So £b(&) and 7(£) are in S.

Conversely let s satisfy the condition to be a scattering data of a
potential u(x). Moreover let F(y), the Fourier transform of #(&€), be
infinitely differentiable and the conditions

(6) r(1+|x1n)|F<m>(x)|dx<oo

hold for any m, n, a, together with their analogues for the left reflec-
tion coefficient. Then u(x) is in S.

3. Solution of the initial value problem. FirstputL,=—D*+wu
and

B,=—4D°+3uD+3Du (D=d/dwx).
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For one parameter family of potential u=wu(t)=u(x,t), let f.(x,{;?)
and s(t) be corresponding Jost functions and scattering data. Suppose
% evolves according to the KdV equation written in the form due to
Lax: dL,/dt=I[B,, L,]=B,L,—L,B,. Then
(7T+) (f)e—Buf.=H+10)’f.
hold. These equations imply that a(Z, ¢) is independent of ¢ and so are
its zeros. Formulas of G.G.K.M. [2]
7(§,0)=7(§,0) exp (8i€%)  ¢;(t)=1¢,4(0) exp (8751)

follow (see also [3] and [4]).

Conversely let u(x) be in S and s={r(&), 1, ¢,} be its scattering data.
Put (&, ) =7r(&) exp (8i£°t) and c,() =c, exp (8;5t). Then for each ¢, s(t)
={r(&,t), n;, c;,(t)} satisfies the condition to be scattering data of poten-
tial u(x,t) belonging to S. To see this, put a(g, t)=al) and b(&,1t)
=b(§) exp (8i&’t) where coefficients a({) and b(£) are associated with s.
Since 7(&,0) is in &, so are (&, t) and its Fourier transform

F(y,t) :n-ljr(s, £) exp (2igy)de

for each t. Define 2 from s(¢) by (4). As a(&,t)+b(&, t) is smooth at

£=0, inverse problem for (— oo, o) i solvable (Lemma 3.1 in [1]).
Next we prove the equation (74). Put h(x,;t)=exp (—ilt)

f.(x,¢;t) and let B=B(x,y;t) be connected with » by the formula

(8+). Then (7+) is equivalent to h,=g(x, {; t) where

By direct calculation, we have

g=0@,L; = C,y; t) exp @iCy)dy
where
C=—B,,;+3uB,.
We obtain an integral equation for the kernel C:

Clx,y;t) +r9(w+y+s ; OC(x, 85 D)ds
0
=r0m(x+y+s s OB, 85 D)ds+2,,,(x+y ;5 0).
0

We get the same integral equation for B, by differentiation of
Marchenko equation (5) with respect to ¢ and the identity 2,-+2,,,=0.
Therefore the kernel B,—C is a solution of homogenous equation asso-
ciated with (5) known to have only trivial solution. h,=g¢ and thus
(74+) are established. (7+) are in turn rewritten as (dL,/dt
—I[B,,L,Df.=0. Consequently % is a solution of the KdV equation.

Details of proof will be published elsewhere.

Remark. Analogous result has been also formulated in Zakharov
and Faddeev [5] by a different method.
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