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23. On Symmetric Spaces

By Yoshio TANAKA

(Comm. by Kinjir6 KUNUG, M. . A., Feb. 12, 1973)

1. Introduction. A.V. Arhangel’skii [1] has introduced the
notion of symmetric spaces and given many interesting results in the
theory for metrizability and so on. In this note, we shall discuss some
properties concerning symmetric spaces" symmetrizability of sub-
spaces, local properties, products of symmetric spaces and images of
symmetric spaces under suitable maps.

We assume all spaces are Hausdorff and all maps are continuous
and onto. We denote by 2x the collection of all subsets of X, and ab-
breviate by (x} a sequence {x;i-1, 2,... }.

2. Preliminaries. We begin by recording definitions of sym-
metric spaces and related spaces.

Definition 2.1. A space X is symmetric if there is a real valued,
non-negative function d defined on XX satisfying the conditions"
(1) d(x, y)--O whenever x--y, (2) d(x, y)--d(y, x), (3) AcX is closed in
X whenever d(x,A)O for any x e X--A.

If we replace the condition (3) by the following" For A cX,
x e

_
whenever d(x,A)-O, then such a space is called semi-metric [9].
A space X is sequential if AcX is closed whenever A C is closed

for every compact metric subset C of X [6].
A space X is O-refinable if for each open covering H of X, there is

a sequence () of open refinements of such that, for x e X, there is

an open covering H which is finite at x [15].
As is well known, we have the relations between such spaces and

other spaces as follows"
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Remark 2.3. By virtue of the above diagram we have the fol-
lowing theorem" A space is semi-metric if and only if it is a hereditary
symmetric space. (We note that the proof of this theorem is directly
given using the following Lemma 2.4.)

For later use, we state the following Lemma whose proof is
straightforward and so is omitted (cf. the proof of [7; Theorem 3.2]).

Lemma 2.4.*) Let X be a space. Then the following are equiva-
lent.

(A): X is a symmetric space,
(B): There is a sequence {g,) of functions from X into 2x such

that (1) g,(x) x, (2) g,(x) y whenever g,(y) x, and (3) OcX is open
whenever, for each x e O, there is i such that g,(x)c O.

(C): X is a sequential space, and there is a sequence {g,} of func-
tions from X into 2x such that, (1) g,(x) x, (2) If g,(x) x,, then {x,}
converges to x, (3) If g,(x,) x, then {x,} converges to x, and (4) For
any first countable subset C containing x, into (g,(x) C) x for each i.

3. Subspaces and local properties. Theorem 3.1. Let X be a
symmetric space. Then a subspace A of X is symmetric if and only if
it is a k-space.

Proof. The "only it" part is obvious.
"if": Let {g,} be a sequence satisfying the conditions of (B) (of

Lemma 2.4.). Define (g,[A)(x)= g,(X) A for x e A. Then the sequence
{g, lA} of functions from A into 2A satisfies the conditions (1) and (2)
of (B). Let OcA and suppose that for xe O, there is i such that
(g, lA)(x)cO. Assume 0 is not open in A. Since A is a k-space, there
is a compact subset C of A such that OC is not open in C. For
x e C, let (g, lC)(x)=g,(x) C. Then the sequence {g, IC} of functions
from C into 2c satisfies conditions of (B), because C is a closed subset
of X. For x e 0 C, there is i such that (g, lA)(x)cO. This implies
(g, lC)(x)cO ( C. Thus 0 V C is open in C, which is a contradiction.
Hence 0 is open in A.

Conversely let 0 be an open subset of A. Then, or x e O, there
is i such that (g, lA)(x)cO. Hence A is symmetric by Lemma 2.4.

The following example shows that a G-set of a countable, sym-
metric space need not be symmetric.

Example 3.2 (cf. [6; Example 1.8]). Let X={0}iJ =1X, where
X,-- {1/i} J {(1/i) + (1/]) ]= 1, 2, }, be a space induced by the fol-
lowing function d on XX"

0, and

d(x, x’)-- I x-- x’l

1

For x, x’e X, d(x, x’)-d(x’, x), d(0, 0)

Xif x, =/=0, or x=O, x’-- 1
i

(A)C(B) has been pointed out by Takao Hoshina.
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Since the function d satisfies the conditions o Lemma 2.1, X is a sym-
metric space. Let A=X-{1, 1/2, ...}. Then it is easy to see that a

G-set A of X is not a k-space. Then A is not symmetric.
In general, a countable CW-complex in the sense of J. H. Whitehead

need not be a symmetric space. For example, let each I be a copy
of the usual closed interval [0, 1], E be the topological sum of {I}, and
A {(0, i) i= 1, 2,. }. Then X=E/A is a countable CW-complex.
Since X is Frchet space, but is not first countable, it is net symmetric
by Fig. 2.2.

But we have
Theorem 3;3. Let a space X have the weak topology with respect

to a point-finite covering {C ; e A}, tha is, a subse 0 of X is open
whenever 0 C is open in C for each e A. If each C is symmetric,
then X is symmetric.

Proof. Since C is symmetric, there is a sequence {g} of func-
tions from C into 2c satisfying the conditions of (B). For x e C,
we can assume g/l()g(x). Let g(x)--eA(x)g(x), where A(x)

[a x e C}. Then it is easy to see that the sequence {g} functions
rom X into 2x satisfies the conditions o (B). Hence X is a symmetric
space by Lemma 2.4.

Corollary 3.4. Let {Ca; a e A} be a point-finite open covering
(or, a locally-finite closed covering) of X. If each Ca is symmetric,
then X is a symmetric space.

In general, a locally symmetric space need not be symmetric. For
example, the space X=[0,/2), where/2 is the first uncountable ordinal,
with the order topology is countubly compact and locally metric.
Since a countably compact, symmetric space is compact [10], X is net
symmetric. (We note that there is a LindelS, Hausdorff, locally
metric space which is not symmetric.)

But from the ollowing Lemma 3.5 and Lemma 2.4 (C), using the
same method as in [13; Lemma 1.3] we have Theorem 3.6.

Lemma 3.5. A locally sequential space is sequential.
Theorem 3.6. Let X be a t-refinable space. If X is a locally

symmetric space, then it is a symmetric space.

4. Products of symmetric spaces. Lemma 4.1 [11]. Let X, Y
be sequential spaces. Then XY is a sequential space if and only if
it is a k-space.

Theorem 4.2. Let X, Y be symmetric spaces. Then X Y is a
symmetric space if and only if it is a k-space.

Proof. The "only i" part is obvious.
"if"" Since a symmetric space is sequential, by Lemma 4.1 X Y

is a sequential space. Then it is easy to see that X Y has the weak
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topology with respect to (CK;C,K are compact metric subsets of
X, Y respectively}. Since X, Y are symmetric spaces, there are
sequences (g} and (g’} satisfying the conditions of (C) with respect to
X and Y respectively. We can assume g/l(x) g(x) and g/(y)c g(y).
For (x, y) e X Y, let g(x, y)-g(x) g(y). Then the sequence {g}
of functions from XY into 2x" satisfies the conditions of (B).
Therefore X Y is a symmetric space by Lemma 2.4.

Lemma 4.3 [4]. Let X be a k-space and Y be a locally compact
space. Then XY is a k-space.

By Theorem 4.2 and Lemma 4.3, we have
Corollary 4.4. Let X be a symmetric space and Y a locally com-

pact, symmetric space. Then X Y is a symmetric space.
The following example shows that the product of a countable,

symmetric space with a countable, metric space need not be symmetric.
Example 4.5. Let X be the space given in Example 3.2, and Y be

X as a set. Define a function d on Y Y as follows: d(y, y’)--0 when-
ever y=y’ and d(y, y’)=Max {y, y’} otherwise. Then a space Y induced
by the function d is metric.

We shall prove the product X Y is not a sequential space. (We
note that X X is a symmetric space.)
Choose pairwise disjoint, usual open intervals It containing 1/i. Let
A= {0} X Y U {U{=I V (X X Y)}, where

G-L ;< (,;> -hen (0, 0) A int A. Hence A is not open in X Y. Assume X 2"
is a sequential space. Then it is easy to see that X Y has the weak
topology with respect to {6’ K; C, K are convergent sequenees on X,
Y respectively}. We remark that, if a sequence {z} on X converges
to the point ero, then we can assume the set {x: i=1, 2,...} is con-
tained in {1, 1/2,...}. Then we can prove that, for :any convergent
sequences C, K on X, Y respectively, A f/(CK) is always open in
CK. Hence A is open in XY, which is a contradiction. Thus
X Y is not sequential. Hence X Y is not symmetric.

5. Images of sTmmetric spaces. Lemma 5.1 [12]. Let f: X---,Y
be a closed map and each f-l(y) be first countable. If Y is first count-
able, then so is X.

Theorem 5.2. Let f: X--.Y be an open-closed map, and each
f-(y) be first countable. If X is a symmetric space, then so is Y.

Proof. Since X is a symmetric space, there is a sequence {hi} of
functions from X into 2x satisfying the conditions of (C). For y e Y,

g(y)choose a point x of f-(y). Let f(hi(x)). Then (1) g,(y) y
and (2) If g,(y) y,, then {y} clearly converges to y. Let Cc Y be a
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first countable subset containing y. Then K=f-(C) is first countable
by Lemma 5.1. Thus xv e intE (h(xv) VI K) or each i. Since f lK: K
-C is open, y e f (int (h(x) K))intc (g(y) C). Hence (3) y
e intv (g(y) C) for any first countable subset C containing y.

Let " g (y) y andg (y)= Y f(X-- U {h(x) x e y-(y)}). Then (4) "
(5) If "g, (y,) y, then it is easy to see that {y,} converges to y.
Let A=C--f(K-- Uint(h,(x)K; x f-(y))). Then y Acg’(y)C,
and A is an open subset of C, because f lK:K-.C is a closed map.
Hence (6) y e intv (g’(y)f C) for any first countable subset C contain-
ing y.

Let g,(y)-- g(y) f g’(y). Then g,(y) y by (1) and (4). If g,(y) y,,
then {y,} converges to y by (2). If g,(y,) y, then {y,} converges to y
by (5) For any first countable subset C of Y containing y, y
e intv (g,(y)f C)for each i by (3) and (6). Thus the sequence {g,} of
functions from Y into 2r satisfies the conditions of (C).

On the other hand, Y is sequential by [6 Proposition 1.2]. Hence
Y is a symmetric space by Lemma 2.4.

Since a compact, symmetric space is metric [1], we have
Corollary 5.3. Le f: X-Y be an open, perfect map. If X is a

symmetric space, then so is Y.
Example 5.4. (1): The image of a countable, symmetric space

under a perfect map need not be symmetric.
Let X be the space given in Example 3.2, B-- {0} U {1, 1/2, }, and

Y--XlB. Then the natural map f" X-Y is a perfect map. It is
easy to see that Y is a Fr4chet space, but is not first countable. Thus
Y is not a symmetric space by Fig. 2.2.

(2) There is a Hausdorff space which is the image of a symmetric
space under an open compact, countable-to-one map, but is not sym-
metric (cf. [14; Example 3.4.]).

We note that the image of a symmetric space under a closed (or,
an open) finite-to-one map is always symmetric [14].
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