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39. On Gs;-Sets in the Product of a Metric Space
and a Compact Space. I

By Jun-iti NAGATA®
Department of Mathematics, University of Pittsburgh

(Comm. by Kinjird KUNUGI, M. J. A., March 12, 1973)

We have proved in [8] that a topological space is paracompact
(Hausdorff) and M if and only if it is homeomorphic to a closed set of
the product of a metric space and a compact Hausdorff space. A simi-
lar characterization for general M-spaces may be obtained, but it is
still an open question whether ‘M-space’ is characterized as a closed set
in the product of a metric space and a countably compact space (see [9]).
In this brief note we are going to turn our attention to G,-sets in the
product of a metric space and a compact space. Although we are not
successful yet in finding an internal characterization of those sets, they
seem deeply related with A. V. Arhangelskii’s p-spaces (see [1]) as will
be seen in the following discussion. All spaces in this paper are at
least Hausdorff, and all maps (=mappings) are continuous. As for the
concept of M-space (due to K. Morita) the reader is referred to [4].
For general terminologies and symbols in general topology (see [6]).

Theorem 1. An M-space X is homemorphic to a G,-set in the
product of a metric space and a compact Hausdorff space if and only
if it is a p-space.

Proof. Itisknown that the product of a metric space and a com-
pact Hausdorff space is paracompact and p, and it is also easy to see
that every G,-set of a p-spaceis p. Therefore we shall prove only the
‘if’ part of the theorem. Assume that X is M and p at the same time.
Then by Morita’s theorem [4] there is a quasi-perfect map f from X
onto a metric space Y. (Namely f is closed and continuous, and f~'(y)
is countably compact for each yeY.) By D. Burke’s theorem [3] there
is a sequence C{/,,CY/,, - - - of open covers of X such that

(i) ifzxeV, eV, i=1,2,..., then K=\, V, is compact,

(i) for every open set U containing K, there is k& for which

Ni, V.cU.
We may assume without loss of generality that each i/, consists of
cozero open sets (=complements of zero sets of real-valued continuous
functions defined on X), because X is a Tychonoff space (which is im-
plied by the fact that X is p).
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Now we define a map g from X into the product space fX XY of

the Stone-Cech compactification BX of X and Y as follows:
9@)=(z, f (), zeX.
It is quite easy to see that ¢ is a topological map from X onto g(X). So
all we have to prove is that g(X) is a G,-set in X X Y. Now note that
we may regard X as the set of all maximal filters consisting of zero
sets in X (see [6]), and put
C={#WepXXY|f(Yez}.
Then we can prove that C is a Gsetin X X Y. (Actually it is a closed
G,-set.) For each cozero open set V of X we define an open set V™ of
BX by V"={2epX|X—-Vez}. We also denote by S,(y) the 1/n-nbd
(=neighborhood) of a point ¥ of Y, where % is a natural number. For
each point y of Y and for each natural number », let
M,(y)=("(S.(1)))" X Su(¥).
Then M,(y) is an open nbd of each (z,y) € C. Furthermore we put
M,=U{M,y)|yeY}
to obtain an open set M, of BX XY satisfying M,DC. Now we claim
that C=N\g_, M,. To proveit, let (z/,y) e BX XY —C. Then f~'(y) ¢ 2/,
i.e. there is a set F' e 2’ such that FN f~'(y)=0. Hence ¥’ ¢ f(F)in Y.
Since f(F) is a closed set, S,() N f(F)=0 for some natural number #.
This implies that (2, ") ¢ M., (y) for each y ¢ Y, and accordingly (z/, ¥")
¢ M,,. Because if p(¥’, ¥)=1/3n, then ¥’ ¢ S;,(y) implying that (z/, ¥)
e M., (y). If p(y',»)<1/3n, then S,,(») N f(F)=0 in Y, which implies
that f(S;.(¥)) NF=0 in X, and hence X — f~(S;,(¥)) € 2. Therefore
e (f S, and (2, y') & M.,(y) follows. Thus in any case (z/, ")
¢ M,,(y) is proved. Finally let us prove that g(X) is a G,-setin C. It
is obvious that g(X)cC. Now we define subsets P, of C by
P,={(,y)eC|ze V™ for some Ve{,}, n=1,2,..-.
It is again obvious that g(X)CP,, n=1,2, -... Since
P, =CNIU{V XY |V eV},

it is an open set of C. Thus all we have to show is that ., P, Cg(X).
Let (2,%) e (e, P,; then there are V,e <, n=1,2,... for which
ze(\=..V;. Hence there are F, ez such that F,CV,, n=1,2,..-.
Since (z,%) € C, f~'(y) € z. Therefore the collection {f~'(¥), F,|n=1,2,
.+.} has f.i.p. (=the finite intersection property). Since f~'(y) is
countably compact, there is ¢ f*(W)N(\;, Fo). Thus xeV, e/,
n=1,2,.... Hence from the property of |/, it follows that K=\3_, V,
is compact, and {K}Uz has f.i.p. Because if not, then KNF=0 for
some F ¢ z, and hence (*., V,) N F=0 for some k. Since F',CV,, this
implies that (N:_,F,)NF=0, which is a contradiction. Since K is
compact, and z is a maximal filter of zero sets, we can conclude that 2
converges to a point p of K. (In order words z is the filter consisting
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of all zero sets containing p.) Thus z=p in X and p € f~'(y), where
the latter follows from the fact f~'(y) e 2. Hence (2, ¥)=9(p) € 9(X),
proving that Nz_, P,C g(X). After all we have proved that g(X) is G,
in C, which is G, in X x Y. Thus ¢9(X) is G, in XX Y.

Corollary. Ewvery paracompact M-space is homeomorphic to a
closed Gy-set in the product of a metric space and a compact Hausdorff
space.

Proof. In [8] we have proved that ¢g(X) in the proof of Theorem
lis a closed set of BX XY if X is paracompact M. Hence this corollary
follows.

Definition. A topological space is called a G,-space if it is homeo-
morphic to a G;-set in the product of a metric space and a compact
Hausdorff space. Every metric space as well as every topologically
complete space in the sense of E. Cech is a G,-space, and every G,-space
is a p-space.

Problem 1. Is every p-space a G,-space?

Although a positive answer to this problem means a beautiful char-

acterization of p-space as well as of G,-space, the answer will be more
likely ‘no’. Then the next question is

Problem 2. Give an internal characterization of G;-space.

Theorem 1 looks like a suggestion that the answer for Problem 2
may be ‘M and p’. But D. Burke [3] gave an example of a locally com-
pact Hausdorff space which is not w4 (accordingly not M). Therefore
a G;,-space is not necessarily M. However, K. Morita [3] proved that
if a G,-set of a normal M-space is the intersection of countably many
open F',-sets, then it is M. Thus we have

Problem 3. Is every M and p-space homeomorphic to a G,-set S
in the product of a metric space and a compact Hausdorff space such
that S is the intersection of countably many open F,-sets? (It is un-
known if ¢g(X) in the proof of Theorem 1 is such a G,-set.)

Theorem 2. A metacompact Tychonoff space Y is a p-space if and
only if there is a Gy-space X and a compact open map f from X onto Y.

(A topological space is called metacompact if for every open cover there
is a point-finite open refinement.)

Proof. The ‘if’ part follows from K. Nagami’s theorem [5] which
implies that the compact open image of a p-space is p provided it is
metacompact and Tychonoff. The ‘only if’ part will be proved as fol-
lows. Let Y be metacompact and p. Then Y has a sequence C{/;, C{/,,

- of open covers satisfying the condition of Burke’s theorem. We
may assume that each C{/; is a point-finite open cover consisting of
cozero open sets. Let CV/,={Vi|aec 4}, i=1,2, ..., and define a subset
X of the product space Y x N(A) as follows, where N(4) denotes the
Baire’s zerodimensional space, i.e. the countable product of the copies
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of the discrete space A.
X={W,(apa, - NeYXNA|yeV, NV N}
We define a map f from X onto Y by
JW, (o, - N=y  for (y,(a,, e - - -)) € X.
It is obvious that f is a continuous open map. The compactness of f
is obtained by a rather routine method of proof (see, for example, [7]),
because each C{/; is point-finite. Now put
M={(a, @y, ---)e NA| VLNV N0}
Then we can prove that X is a G,-set in fY x M. For each (a;, @y, - - -)
e M, we put
P(av Qgy *** ,0!7;)=(Vilﬂ N Vﬁl)NXN(“n ce ,057:)’
where N(ay, - -+, 2)={Bu psy - - ) € M| =0, - - -, fi=a;}. Furthermore
we let
P,=U{P(a, -+ ) | (s, - - +) € M}

Then each P, is an open set of Y X M such that P,OX. To prove X
=i Py let p=(2, (@, ay, - - ) e Y XM—X. If zeY, then ze¢ Vi, N
-+ NVz for some n. Therefore p ¢ P(,, -+ -,a,). Since it is obvious
that p e P8, - - -, B) for (B, -- -, B,) different from (ay, -+ -, ,), D € P,
follows. If ze Y —7Y, then there is F ¢ z such that F N (N5, Vi)=0,
because the compactness of (M, V%, follows from that (i, Vi,#0.
Hence FN(N2, Vi)=0 for some n. Thus ¥Y— N, Vi ez, implying
that ze¢ (Vi,N---NV2). Namely pePa, - -,a,). Again pe P8,

-+, By) is obvious if (8, - -+, B)#(ay, - - -5 @), and hence p ¢ P,. After
all X=M, P, is concluded.

Problem 4. Characterize the compact open images of G,-spaces.
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