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1. In [3], we have introduced a generalized notion of abelian
projections of von Neumann algebras and proved that some elementary
properties of abelian projections are preserved under the generali-
zation.

Using this concept, in this note, we shall introduce a notion that
a von Neumann algebra is continuous over a von Neumann subalgebra,
and show some properties of such a von Neumann algebra in § 2.

In § 3, we shall prove that a von Neumann algebra ./ continuous
over a von Neumann subalgebra & has an useful property relative to
an expectation of _J onto 4. In [2], H. Choda has introduced the
notion of Maharam subalgebras of von Neumann algebras motivated
by Maharam’s lemma. On the analogy of this definition, we shall
introduce a notion of strong Maharam subalgebras of von Neumann
algebras and prove that a von Neumann subalgebra @B of a von
Neumann algebra ./ contained in the center is a strong Maharam
subalgebra of _{ if _1 is continuous over 3.

We shall use the terminology due to Dixmier [4] throughout this
note without further explanations.

2. In the sequel, let .4 be a von Neumann algebra and & a von
Neumann subalgebra of 4. Denote by B°=_41N P the relative com-
mutant of B in ] and B* the set of all projections in A.

The following definition is introduced in [3] as a generalization of
the notion of abelian projections:

Definition 1. A projection E ¢ _/ is called to be abelian over &
if F ¢ $° and, for every projection P ¢ ./ such that P<FE, there exists
a projection Q € B such that P=QFE.

The following lemma gives an alternative algebraic definition of
abelian projections over B:

Lemma 2. E e JP is abelian over B if and only if E e $° and
E JFE=3E.

Proof. The ‘“only if” part is obvious. Conversely, let E be a
projection in % such that E_JE = BE and E the $N P'-support of E,
that is,

E=inf {Fe (B3N B)"; F2E},
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then the induction of $5 to By is an isomorphism [4; p. 19, Proposition
2]. Denote by R|r the restriction of R onto F for R e JAF and F € 7P,
where © is the Hilbert space on which _ acts. Take Pe (E_E)?
=(EBE)?, then there exists Qe (EBE)" such that (Qlz)s= Pl
Therefore, we have Qe $HF satisfying P|;=EQF|z, which implies
P=QE.

Definition 3. A von Neumann algebra 4 is called to be continuous
over P if 4 contains non-zero projections abelian over 3.

Remark. If /] is abelian and continuous over 3, then & is called
by Dye [5] a type II subalgebra. For the center % of i, .4 is con-
tinuous over % if and only if 4 is continuous in the usual sense, cf.
[4]. If B is contained in the center % of 1 then this definition is
introduced by Guichardet, cf. [3] and [7].

Example 4. A continuous von Neumann algebra ./ is continuous
over an abelian subalgebra $B. In fact, if _1is not continuous over 4,
then by Lemma 2, there exists a non-zero projection E e NP with
Ar=Br. Hence ] contains a non-zero abelian projection.

Example 5. A maximal abelian subalgebra $B of a continuous
von Neumann algebra /1 is continuous over %, cf. Lemma 13.

Proposition 6. If A is continuous over B, then B’ is continuous
over .

Proof. If &’ is not continuous over _{’, then we have a non-zero
projection E e AN B with Bp=_4%; hence we have ;=P and a
contradiction.

Theorem 7. If every projection in B° is decomposed into the sum
of two projections in B which are orthogonal and equivalent (mod. BH°),
then A is continuous over B.

Proof. Assume that (] is not continuous over $. Let E be a
non-zero projection abelian over &% and E=@Q +R a decomposition in
the assumption. Let @ (resp. R) be the B-support of Q (resp. R).
Then @ ~R (mod. $°) implies @=R. In fact, if Pe B is a projection
and V e $° a partial isometry with VQV*=R ; then, PR=R if and only
if VPQV*=VQV* if and only if PQ=(Q, which implies Q=R. Since
E is abelian over B, Q=QF and R=RE by [3; Lemma 2]. Hence
Q=R or E=0, which is a contradiction.

3. A positive linear mapping e of 4 onto & is called an expec-
tation of 4 onto B if e satisfies the following conditions: (i) I*=1 and
(ii) (BAC)*=BA*°C for all A ¢ 4 and for all B,C ¢ @, cf. [8] and [9].

Definition 8. Let ¢ be a normal expectation of 4 onto B. Bis
called an e-strong Maharam subalgebra of _J if for any Pec Jf and
any B e B such that 0<B<P° there exists a projection @ such that
Q<P and Q°=B, cf. [2].
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Lemma 9. If 1 is continuous over B, then, for every P e AT and
Q e B® satisfying 0+£PQ e (B°)?, there exist two projections Re A
and E € B? such that 0R<PQ, 0+E<Q and (P—R)F+0 and RF=+0
for any F ¢ B* with 0+F<E.

Proof. Assume that there are not such projections. Take any
Re J? such as 0#R<PQ. Put

G=sup {Ge B*; (P—R)G=0 and GZQ}
and

G'=sup {G' € B*; RG'=0 and G'=Q—G}.
Then Ge Band G'e B. If G+Q—G,then0£Q—-G—-G' <£Q. Bythe
assumption, for R and Q@ —G—G’, there exists a nonzero projection
Fe B such that F<Q—-G—G and (P—R)F=0 or RF=0. By the
definitions of G and G/, if (P—R)F=0 or RF =0, then F'=0, which is a
contradiction. Therefore G'=Q —G, which implies R(Q—G)=0, so
that R=RQ=RG=PG=PQG=GPQ. Therefore PQ is abelian over
B, which contradicts that 7 is continuous over 3.

Let e be a normal expectation of /] onto B, then the restriction
el ¢ is a normal expectation of $° to B if B is abelian, which will be
identified with e.

Theorem 10. Let B be an abelian subalgebra of A and e a
normal expectation of J onto B. If B°is continuous over P, then P
18 an e-strong Maharam subalgebra in B°.

Proof. At first, we shall show

Take and fix a projection P of $H°. For any integer » and
(%) projection R ¢ B with PR=0, there exists a projection E e $°

such that 0:£E<P, 0+#ER and E°R<P°R/2".
By Lemma 9, there exist two projections G in $° and E in & satisfying
(i) 0£G<PR, (i1) 0E<R and (iii) (P—@®F =0 and GF+0 for any
projection Fe B with 0F<E. Since $ is abelian, then & is
isomorphic to C(£2), the algebra of all continuous functions on the
character space 2 of 3. Denote by C (resp. D) the projection corre-
sponding to the characteristic function of the set {we 2;2G%w)
=(resp. 2)PYw)}). Put Q=P —-GFGC+GD, then Q*=P*—G)C+G°D
<P¢/2. Since CE+0 or DE+0 by the definitions, we have (P—G)CE
#0 or GDE=+0. Hence we have QF=(P—G)CE+GDE+0. There-
fore, for R in (x) and n=1, we have a projection @ in $° such that
Q=<P,QR=+0 and Q°R<P°R/2. Replacing P by Q and repeating the
process, we have (x).

Next, using (%), we shall show the following:

For any nonzero projection Pec $° and B e % with 0<BZP¢,
(%) there exists a nonzero projection Q € B¢ such that Q<P and
Q°<B.
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By the spectral theorem, there exist a nonzero projection R e & and
an integer » such that BR=R/2". Since P°=B by the hypothesis,
(PRy=P°R=BR=R/2">0, which implies PR=+0. By (x), there is a
nonzero projection E ¢ B¢ such that E<P, ER+0 and E°RZP°R/2".
On the other hand B<P°*<1, so that we have
(ER)*=E°R<P°R/2"<R/2"<BRZ<B.

Put Q=FR. Then Q is a nonzero projection belonging to $°¢ with
Q<P and Q*°<B. Therefore (%) is proved.

Let P be a projection in $° and B e B such as 0<B<P¢. By (x%)
and Zorn’s lemma, there exists a maximal orthogonal family (Q,),c; of
projections in $° such that 0:£Q,<P for each acl and >, Q:<B.
Put Q=>_, Q., then Q is a projection of $° and Q<P. By the nor-
mality of e,Q°=>,Q¢. If Q°+#B, then we have (P—Q)*=B—Q°>0,
8o that, by (%), there exists a projection R ¢ $° such that 0<R<P—@Q
and R°<B—@¢ which contradicts the maximality of (Q,)..;. Hence
Q°=B. Thus, for any projection P e $° and B € P such as 0<B<P?,
we have a projection @ ¢ B¢ such that Q<P and Q°=B. This completes
the proof.

Especially, let ./ be an abelian von Neumann algebra, then
Theorem 9 contains Maharam’s lemma, cf. [5]. Our proofs of Theorem
10 and Lemma 9 are analogous to H. Choda’s proof [1] of Maharam’s
lemma based on Dye’s sketch [5].

Corollary 11. Let P be a von Neumann subalgebra of J con-
tained in the center of J and e a normal expectation of A onto B.
If J is continuous over B, then B is an e-strong Maharam subalgebra
n .

Let 4 be a finite von Neumann algebra, then there exists the
natural mapping (center-valued Dixmier’s trace) § of ] onto the center
Z, which is a faithful normal (conditional in the sense of [9]) expecta-
tion of 4 onto &. If .1 is continuous, then ./ is continuocus over Z.
Hence, as a consequence of Corollary 11, we have the following

Corollary 12. Let  be a finite continuous von Neumann algebra
and 4 be the natural mapping of A onto the center %, then % is o
h-strong Maharam subalgebra of .

Now, we shall discuss another application of Theorem 10.

Lemma 13. Let B be a maximal abelian subalgebra of A and C
a von Neumann subalgebra of i contained in the center %. If J is
continuous over C, then B is continuous over C.

Proof. If & is not continuous over (, then there is a nonzero
projection E ¢ B which is abelian over C, that is, $;=Cy by Lemma 2.

Since P is maximally abelian in 1, B is maximally abelian in /.
Hence
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CE-——.CBE:@'E:OJE:C;ZDJE:JE-
Therefore, by Lemma 2, E is abelian over C in 4, which contradicts
that _/1 is continuous over (.

Corollary 14. Let B be a maximal abelian subalgebra of A and
C a von Neumann subalgebra of A contained in the center. If A is
continuous over P, then Bis continuous over (.

Proof. If & isnotcontinuous over C, then by the proof of Lemma
13 there exists a nonzero projection E ¢ B such that Bp=.4,. Since
P is abelian, F ¢ $°. Therefore, by Lemma 2, E is abelian over &,
which contradicts that _/ is continuous over 3.

Theorem 15. Let 4 be a finite continuous von Neumann algebra
and § the natural mapping of A onto the center Z. Then % is a
k-strong Maharam subalgebra of each maximal abelian von Neumann
subalgebra B of .

Proof. For each maximal abelian subalgebra B of 4, & is con-
tained in 4. In fact, ZCANFH'=PH. Since A is continuous, B is
continuous over % by Lemma 13. Therefore, by Theorem 10, & is a
h-strong Maharam subalgebra of 3.

Remark. Theorem 15 (resp. Corollary 12) is a sharpening of the
theorem of Feldman [6] (resp. [4; p. 218]).
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