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67. Generalized Prime Elements in a Compactly
Generated l-Semigroup. 1I

By Kentaro MURATA*® and Derbiau F. Hsu*®

(Comm. by Kenjiro SHODA, M. J. A.,, May 22, 1973)

Let L be a cl-semigroup with the conditions (1), (2), (3), (4) and (%)
in [2]. Moreover we impose that the compact generator system 2 of
L is closed under multiplication. The main purpose of this note is to
define principal p-components of elements in L by using ¢-primes in [2],
and to prove that every element of L is decomposed into their principal
@-components.

3. Principal ¢-Components.

Let a be an element of L, and » an element of 5. The (left) ¢-
residual a: u of ¢ by u is defined to be the supremum of the set of all
elements ¢ with p(w)ep(x)<a, x € 2. We suppose throughout this note
that there is such elements x for any a € L and any ue 2. For a,d in
L, the (left) p-residual a: b of @ by b is defined as infimum of the a: u,
where % runs over 2(b). Then we can prove the following properties:
1) a<a’ implies a: b<a’: b, b:a>b:a’and 2) (M7, a,): b=, (a;: b)
for a,a’, a;, b e L.

Now it is not so evident that a: b>a for a,bin L. To prove this,
it is sufficient to show that (a: w) Ua=a: u for a ¢ L and u € 2(b). Take
an arbitrary element x of 2((a: ) Ua). Then we can choose an element
y of 3(a:uw) with x<yUa. Since y<sup {z’ € 3 |p(we(x’)<a}, we can
find a finite number of compact elements #,, - - -, «, such that y <\ Jr, x;
and p(wWep(x)<a. Then we have a<\Ur, ;Uo7 o(x) Ua, o) <
U o) Ua, and e(we(x) <UL, o(we(r,) Up(w)a<a. Therefore we
obtain (a: uw)Ua<a,(a:u)Ua=a.

(3.1) Definition. Let p be a maximal ¢-prime element belonging
to an element a of L. The principal p-component of a by p, denoted
by a(p), is the supremum of all a:s,s runs over X'(p), if p=*e. If
p=ce, a(p) is defined to be a.

(3.2) Lemma. a<a(p) and a(p) is p-related to a for any maximal
o-prime element p belonging to a.

Proof. If p=e, the assertion is trivial. So we suppose that p=+e.
We want to prove that a(p) Ua=a(p). For the sake of this, take an
arbitrary element x of X(a(p) Ua). Then since there is an element y
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of 3(a(p)) withx <y U a, wehave y <SUD;c 5+, {@: S}=SUD,c 5+ () {SUDP [N,]}
<sup [Ves:p Nsl, where N, is the set of the compact elements u with
o(p(uw)<a, and \/ denotes the set-theoretical union. Then we can
find a finite number of elements x; of \/ 5., N, such that y<\Jr, z,.
Suppose that x; € N,,. Then we have o(s)p(z) <a,z<yUa<| 2, 2,Ua
<Ur @) Ua, o)<\ Uk, o(x;) Ua. Now let M* be the kernel of 3'(p).
Then we can find s} of M* such that s} <¢(s)) for¢=1,2,...,n. Take
an element s* of M* such that s* <[]7, sf. Then we have ¢(s*) <¢(s,),
and  o(s*)p(x) < U (8 o) Ua < Uk o8 e(r) Ua =a.  Hence
r<a: s*, x<a(p). We get therefore a(p)Ua<a(p), a(p)Ua=a(p).
Next, take an arbitrary element x of X(a(p)). Then we can show as
above that o’ <\ Jr, o(x,) for every =’ in X(p(x)), where ¢(s)e(x,) La.
By using the above s*, we obtain ¢(s*)a’ <e(s*)p(x) <\ o(s¥)e(x,)
<Ut e(spp(x) <a. If s is in 3'(p), we can show that ¢(s) is not less
than a (by (2.5) in [2]). In particular, so is ¢(s*). This means that x
is p-related to a. a(p) is therefore ¢p-related to a.

By virture of the above proof we obtain the following :

(3.3) Corollary. a(p)==sUDgucy {0 s*} for any kernel M* of 3'(p).

(3.4) Proposition. Let p be any maximal p-prime element belong-
g to an element a of L. Then a(p) is less than every element b such
that b>a and every element of X'(p) is p-unrelated to b.

Proof. Take an arbitrary element x of X(a(p)Ub). Then z<a’
Ub for some «’ of X(a(p)). Similar argument in the proof of (3.2)
yields &’ <\, p(@) U D, o(s)p(x;) <a<b, where z; and s* are the same
as in the proof of (3.2). Since s* is p-unrelated to b, there exists an
element u of 3(¢(s*)) which satisfies that uv<b implies v<b. Then
we have ux’ <\, o(s®)p(x,) Up(s*)b<b. Hence 2’ <b, and hence x <b.
Therefore we get a(p) Ub<b,a(p) Ub=>b and a(p)<b.

(3.5) Theorem. Ewvery element a of L is decomposed into the
meet of all its principal p-components.

Proof. Let b be the element mentioned in (3.4). Let 8 be the set
of all maximal p-prime elements belonging to a. Then by (3.2) we get
a<inf, .y a(p). Conversely, if we take an arbitrary element z of
2 (inf, 4 a(p)), then 2 <sUpP,c s/, {00 8} for every peP. By the com-
pactness we can take a finite number of elements z,, - - -, z, such that
r<\Jr, ®; with o(s))p(x)<a for suitable b,e 2’(p). Then by the
similar argument in the proof of (3.2), we have ¢(s¥)o(x;) <a for some
s¥in 2’(p). Now we consider the set M, of the elements 4 of X such
that p(we(x;) <a for ¢=1, -.-,n. (Existence of such an element u is
easy to see.) Then M, does not contained in X(p) for each pe . By
(2.6) in [2], u is p-unrelated to a. Hence there exists an element «’ of
2(p(w)) such that w'v<ae implies v<a. Then since w'=;<p(Wep(x;)<a
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for every z; in X(p(x;)), we have z;<a,p(x;)<a for i=1,...,n. Thus
we get 2 <UJr, ;<UL o(x) <a. Therefore we obtain inf, ., a(p) <a,
completing the proof.

4. @-Primary Decomposition.

(4.1) Definition. An element q of L is (left) ¢-primary, iff
whenever ¢(2)¢p(y) <q implies x<7,(q) or y<q for z,ycl.

o-prime elements are evidently ¢-primary elements.

Let M be a ¢-system with kernel M*. We suppose as in the case
of [3] that M meets X(a) if and only if M* meets 3(a) for every a in L.
(This condition holds for the trivial map x—x,x e X.) Under the above
condition we can prove that r,(aNd)=r,(a)N7,(D) for any a,bec L.
The following properties are immediate by the definition of ¢-radicals:
1) a<b implies r,(a) <7,(b) and 2) r,(r,(a))=7,(a).

(4.2) Proposition. If q,,---,q, 18 a finite number of o-primary
elements with the same o-radicals, say r,(q;)=c for i=1, ---,n, then
q=q,N - Ngq, is p-primary and has the same radical c.

The proof is the same as in [1].

(4.3) Proposition. An element q is p-primary if and only if q: b
=q for all elements b which are not less than r,(q).

Proof. Suppose that q is ¢-primary and b is not less than r,(q).
Let y, be an element of X(b) which is not less than r,(¢). If z is in
2(q: b), then there is a finite number of elements x,, - - -, %, such that
2 <\UJfy x; and p(®e(x,) <q for all y in 3(b),i=1, ..-,n. We have in
particular o(y)p(x,)<q. Hence we get x;<q for i=1, -..,n by the
definition of p-primarity. Therefore we have x<q,q:b<qand q:b=q.
Conversely, suppose that ¢(@)p(y)<q and z is not less than r,(g) for
2,y in 2. Then of course ¢(x) is not less than ¢(q). Hence we have
q: o(x)=q. Take an arbitrary element z’ of X(p(x)). Then we have
(@) <q, y<q:a’. Thus we get y<inf, crqw) {¢: 2}=0q: o(@)=q.
Therefore q is p-primary. q.e.d.

A normal decomposition of elements with respect to ¢-primary
elements can be defined in the obvious way. If we suppose that q: ¢
=e for every o-primary element q [3], we obtain an analogue of the
uniqueness theorem of Lasker-Noether in commutative rings.

(4.4) Theorem. Suppose that an element a has p-primary decom-
position. Then in any two normal decompositions of a, the number of
p-primary components as well as their p-radicals are necessarily the
same.

The proof of this theorem is essentially the same as in [1].
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