438 Proc. Japan Acad., 49 (1973) [Vol. 49,
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(Comm. by Kenjiro SHODA, M. J. A., June 12, 1973)

1. Let K be a finite extension of Q,, the rational 2-adic numbers.
E. Witt [6] proved that the order of the Schur subgroup S(K) of the
Brauer group Br(K) is 1or 2. So, given any finite extension K of Q,,
we must tell whether S(K)=1 or S(K) is the subgroup of Br»(K) of
order 2. This problem was completely settled by the author [3]. The
purpose of the present paper is to outline another proof of the result.
(The details will appear in the lecture note [4].) The idea of the new
proof is the same as the one devised by the author in [1], where for
any finite extension K of the rational p-adic numbers Q,, p being any
odd prime, the Schur subgroup S(K) was determined.

Notation. For a positive integer n, {, is a primitive nth root of
unity. Let LDk be extensions of @, such that L/k is normal. Then
G(L/k) is the Galois group of L over k. e, (resp. f,,;) denotes the
ramification index (resp. the residue class degree) of L/k.

2. Throughout this paper, k¥ denotes a cyclotomic extension of Q,.
Let B be a cyclotomic algebra over k:

B=(B, k() k)= Z{:} E(©)u, (direct sum), (u,=1),

uu.=plo, DU,., UL=2"U, (x € k),

where ¢ is a root of unity, G=G(k()/k), and § is a factor set of k()/k
such that the values of g are roots of unity in k(). Let L=@Q,(’) be a
cyclotomic field containing k(0), ¢’ being some root of unity. Let Inf
denote the inflation map from HXk(()/k) into H*(L/k). Then
B~(Inf(®), L/k). Thus we always assume that any cyclotomic algebra
B over k is of the form: B=(8,L/k), L being a cyclotomic field over
Q,. Wecan write L=Q,(¢,,, (), r=2%—1, where a=f,o, and n is some
non-negative integer. If n<1, then B~1, because the extension L/k
is unramified and the factor set g consists of roots of unity. So we
assume n>2. We have (g, 1) =alo, t)7(0, 1), alo, 7) € <L, 7(a, v) € L\,
for any o, v of G(L/k), whence (8, L/ k) ~(«, L/ k)®(y, L/ k).

Proposition 1 (Witt [5, pp. 242-2431). (y,L/k)~1.

Remark. The result can also be proved by the techniques that
will be developed in this paper. (See[4].) Another proof was already
given in [3].

Thus we only need to study the following type of cyclotomic
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algebra:

B=@,L/k), L=Q)(u ), n=>2, r=2°—1, (1)

Bla, ) € &> (0,7 e G(L/E)).
For the remainder of this section, we assume n>8. Let §, denote the
inertia group of L/Q,. Then, $,=<6> X, 6" *=~,=1, where
C3n="0C,y Con =03, (2)

$0=¢.=¢{,. A Frobenius automorphism ¢ of L/Q, is given by =2,
&»=Cm. The subgroups of 9, are classified into three types: (1) <6*>
X, (i) <6, 1=0,1, - -+, n—2), (iii) >, v=0,1,--.,2—3). Let
 denote the inertia group of L/k. Then $=9,NG(L/k), so © is in
one of the above three types.

Theorem 1. Notation being as above, if H=<{6*> (0<1<n—2), or
if =" (0<v<n—38), then B=(8, L/k)~1.

Before proving the theorem, we will represent a lemma which was
one of the ideas in [1].

Lemma 1 (Yamada [1]). Let p be a prime number and Q, the field
of rational p-adic numbers. Let ADK be finite extensions of Q, such
that A/K is normal. Set e=eyx, f=fyx. Letz be a natural number
divisible by ef =[4: K] and let 2 be the unramified extension of K of
degree z. Set A'=A-2. Then e, x=e and f.,x=z2. Furthermore,
there is a totally ramified extension F of K in A’ of degree e so that
F.Q=A and FN2=K. Thatis, there exists a Frobenius automorphism
¢ of A'|K of order z. The inertia group of A'/K is canonically iso-
morphic to that of A/K.

Proof (The reader should refer [1, p. 302]). Since an unramified
extension is uniquely determined by its degree, it follows that
[@N4:K]l=f Hence A'=4-92 is normal over K of degree ze, A'/Q is
totally ramified of degree e, and 4’/ 4 is unramified of degree z/f. Set
GUL|K)=G, G |AH)=H, and G(A'/2)=H,. Then HNH,=1, |G/H|
=ef, and |G/H,|=2. This implies that for any element ¢ of G, ¢* be-
longs to HN H,=1,i.e. 0°=1. The assertions of the lemma easily follow.

Proof of Theorem 1. Keeping the notation of Theorem 1, we
apply Lemma 1 to the extension L/k. Recall that L=Q(,.,¢,), r=2°
—1, G(L/Q,)=LK0>x{>XE>. Pute=eyu, f=frx Denote by 2 the
unramified extension of k& of degree ef and set L’'=L.-Q2=Q,(:,&,),
r"=2%—1., Then Lemma 1 implies that there exists a totally ramified
extension F' of k of degree e such that F.Q=L', FN 2=k, and G(L'/ Q)
is canonically isomorphic to §, the inertia group of L/k. We can de-
scribe the circumstances more explicitly. We may obviously write
G(L' | Q) =<0> x> x &>, where 0 and ¢ are defined by (2) with (%=
=, and & =%, 8. =Cn.  Let & denote the inertia group of L//k. If
H=">CG(L/k) then & =*>CGL'/k). Also, if $=<6”:> then
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&' =<6". Putf'=fr0. (f'f=a). Letzbe a Frobenius automorphism
of L/k. Regarding 5 as an automorphism of L/Q,, we write p=§7'62*,
for some integers , ¥y. Then, 7’ =(£)"'6% is a Frobenius automorphism
of L’ /k and (y)' =1, (ef =f,.,x). Hence G(L'/k)=9 x{y'>. Note that
B=(8,L/k)~(Inf (B), L’/ k), where Inf denotes the inflation map of
H*L/k) into HXL’/k). Therefore, in order to prove Theorem 1 we may
assume that the extension L/k has a Frobenius automorphism 5 of order
Iy F=Fim so that G(L/k)=9x{yp>. As is remarked above, we write
=877, (y=0,1).

(i) The case §={", (0<1<n—2). Suppose first that y=1, so
p=E&76%. Setrt=6". We have B=(8,L/k)=>_ Lu,=> 2} > J=5 Luiui,
e=2""*"1 Let B(z,7)/B(n, 1)=C%, so wu,=Chumu,. Since wuuiu '=us,
we have u¢==_%.,, for some integer ¢. It follows from the relation [2,
(1.11)] that

Citra= (L)'= (GG T =00, (3)
where A=—57—1 and S=1+5"+ ... +(BN'=1-5"7%/1-5". S
(resp. A) is exactly divisible by 2"~~* (resp. 2). By (3) we conclude
that 2|b. Let Y be an integer satisfying AY=b (mod2"). (Since
(2,A/2)=1 and 2|b, such an integer Y does exist.) Then u,(Chu,)
=0Ty, =(Chu)u,. Let E (resp. F) be the subfield of L over k
corresponding to {z) (resp. <»>) in the sense of Galois theory. We have
B=3>,>,E - FCu)u~l, Bk, Q: (Chu), Flk,o)~(x£1,F/[k,1),
because u! = + 1, (CLu,) =LLe+++*"p(z, 0)f(*, ©) - - - f(z*~, )= £ 1, and
E/k is unramified ({, 2 k). Since e;,=2"""/e=2'"%, it follows that
Nie.(—1D =1, and so the order of the norm residue symbol (-1, F/k)
=(Ny0.(—1),F/Q)=(,F/Q, is equal to 1. Thus, B~1, as required.

Suppose next that y=0. Then, {;=¢, for every e G(L/k), so
¢, ek. It follows from the Witt’s result [5, Satz 12, p. 245] that B
=(8,L/k)~1. (This can be also proved by the same techniques as
above. The details will appear in [4].)

(ii) The case =<, (0<v<n—38). Setr=6¢"c. Since wuiu;’
=u¢, it follows that u¢= +1, e=2""?"*, Let uu,=u,u.. By the re-
lation [2, (1.11)] we conclude that 1=(£ 17 '=(E)+ =0T, T
=14+(=5")+ .- +(=5)'=1-5""7*/(A+5%). T is exactly divisi-
ble by 2!, so 2|b. Let X be an integer satisfying (1+5")X
=b(mod 27). Then u,(C&u,)=Cz"*"u,u,=Chu,)u.. Let E (resp. F) be
the subfield of L over k corresponding to {(r> (resp. {»») in the sense of
Galois theory. Then we have B=3 > E-Fui(¢iu,)! = ((CGu,)’, E/k,7)
Qe Flk,t)~(+1,F|k,z). Since 2|e;yq, the same argument as in
the case (i) yields that B~1. This completes the proof of Theorem 1.

Remark. If §=<(6"> x> (0<2<n—2), then the computation of
invariant of the cyclotomic algebra B=(8, L/k) is a bit complicated (in
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particular, for the case that (#*>+#1, x+0, where p=£"6%v). So, it
will be dealt with in the subsequent paper.

3. Let k be the smallest non-negative integer such that k is con-
tained in Q,(&,,) for some odd integer m. h=0 if and only if k/Q, is
unramified. Set M=k, f=/Sug. Then M=Q,(lun, &y ) and M is
the minimal cyclotomic field containing k. If F is the maximal un-
ramified extension of kin M, then M=FE(,) (h+0). Suppose that A=+0
and k(&,)/k is ramified. Then M/FE is also ramified and h>3. Let o
be the generator of G(M/E) (o*=1). Let{s%=0C%. Then either z=—1or
2= —142*"! (mod 2"). (These results follow from elementary proper-
ties of local fields and have been proved in [3].)

Theorem 2 (Yamada [3]). Notation is the same as above.

(1) If k)/k is ramified, then only three cases arise: i) h=0, ii)
h>3, z=—1 (mod 2%), iii) h>3, 2= —1+2"""! (mod 2*). For the cases
1) and ii), S(k) is the subgroup of order 2 of Br(k). For the case iii),
S(k)=1.

D  If k)] k is unramified, then S(k)=1.

Proof. Let B=(3,L/k) be a cyclotomic algebra over & given by
(1). Then, LM, son>h. We also keep the notation of Theorem 1.
$ is the inertia group of L/k. If k()/k is unramified, then either
n=2, $=1 or n>3, $=<{6*> for some 2. Hence, Theorem 1 yields
that B~1, whence S(k)=1. If k(,)/k is ramified, >3, and z2=—1
+ 27~ (mod 2*), then $=<{6"¢> for some v (0<y<n—38). It follows from
Theorem 1 that B~1, whence S(k)=1.

Finally suppose that k(Z,)/k is ramified and that either =0, or 2>3,
=—1 (mod 2"). Putl=2 for =0 and I="h for h>3. Let L be the
unramified extension of k({,) of degree 2. Then L=Q,(%u,ly 1), f’
=f1,0,- It turns out that e;,;=2 and that there is a Frobenius auto-
morphism ¢ of order f=f.,;,, whence G(L/k)=<w)Xx{p), o*=¢’=1,
Lo=Ct. Let o=, 3<t<2!4+1. Set t=1+2%m, 2, m)=1. It can
be shown that ¢/ —1 is divisible by 2'*'m. Set y=(¢'—1)/2"*'m. Then
the following cyclotomic algebra B over k has Hasse invariant 1/2:
B:iZl‘;)ZZZ Lot (direct sum)
UM, =Cuuu,, U =1, ul=Cd.
(For the proof, see [3].) This completes the proof of Theorem 2.

Remark. For any finite extension K of @,, S(K) is readily deter-

mined from Theorem 2 (cf. [3, Theorem 3]).
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