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(Comm. by Kenjiro SHODA, M. . A., June 12, 1973)

1. Let K be a finite extension of Q., the rational 2-adic numbers.
E. Witt [5] proved that the order of the Schur subgroup S(K) of the
Brauer group Br(K) is 1 or 2. So, given any finite extension K of Q2,
we must tell whether S(K)-I or S(K) is the subgroup of Br(K) of
order 2. This problem was completely settled by the author [3]. The
purpose of the present paper is to outline another proof of the result.
(The details will appear in the lecture note [4].) The idea of the new
proof is the same as the one devised by the author in [1], where for
any finite extension K of the rational p-adic numbers Q,, p being any
odd prime, the Schur subgroup S(K) was determined.

Notation. For a positive integer n, is a primitive nth root of
unity. Let L k be extensions of Q such that L/k is normal. Then
G(L/tc) is the Galois group of L over k. e/ (resp. f/) denotes the
ramification index (resp. the residue class degree) of L/k.

2. Throughout this paper, k denotes a cyclotomic extension of Q2.
Let B be a cyclotomic algebra over k"

B- (, k() / k)- , k()u (direct sum), (ul 1),

uu=(, )u, ux--xu (x e k()),
where is a root of unity, G-G(k(5)/k), and fl is a factor set of k()/k
such that the values of/ are roots of unity in k(5). Let L-Q.(’) be a
cyclotomic field containing k(), ’ being some root of unity. Let Inf
denote the inflation map from H(k(5)/k) into H(L/k). Then
B(Inf (fl), L/k). Thus we always assume that any cyclotomic algebra
B over k is of the form" B--(fl, L/k), L being a cyclotomic field over
Q2. We can write L-Q.(n, r), r--2--l, where a--fL/Q and n is some
non-negative integer. If n_< 1, then B 1, because the extension L/k
is unramified and the factor set fl consists of roots of unity. So we
assume n>_ 2. We have fl(a, r)-(a, r)(a, r), (a, r) e (}, ’(a, r) e (},
for any a, r of G(L/k), whence (fl, L/ k)N(c, L/ k)(R)(y, L/ k).

Proposition 1 (Witt [5, pp. 242-243]). (’, L/k) 1.
Remark. The result can also be proved by the techniques that

will be developed in this paper. (See [4].) Another proof was already
given in [3].

Thus we only need to study the following type of cyclotomic
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algebra"

B=(,L/k), L-Q(n,), n>_2, r=2--l, (1)
fl(a, r) e (n} (a, r e G(L/k)).

For the remainder of this section, we assume n>_3. Let 0 denote the
inertia group of L/Q.. Then, 0 (t} x (}, t-=- 1, where

:, (2)
5-5-5r. A Frobenius automorphism of L/Q. is given by 5-,-. The subgroups of 0 are classified into three types" (i)
x (}, (ii) (t}, (= 0, 1, ..., n--2), (iii) (0’}, (,= 0, 1, ..., n--3). Let
denote the inertia group of L/k. Then 2=0 G(L/Ic), so is in

one of the above three types.
Theorem 1. Notation being as above, if ----(02} (0 _< 2 _<n 2) or

if --(t2} (0<<n--3), then B=(fl, L/k)l.
Before proving the theorem, we will represent a lemma which was

one o the ideas in [1].
Lemma I (Yamada [1]). Let p be a prime number and Q the field

of rational p-adic numbers. Let AK be finite extensions of Q such
that A/K is normal. Set e=ez, f=f/. Let z be a natural number
divisible by ef--[A" K] and let 9 be the unramified extension of K of
degree z. Set A’-A.9. Then e,/=e and f,/--z. Furthermore,
there is a totally ramified extension F of K in A’ of degree e so that
F. 9= A’ and F 9=K. That is, there exists a Frobenius automorphism

of A’/K of order z. The inertia group of A’/K is canonically iso-
morphic to that of A/K.

Proof (The reder should refer [1, p. 302]). Since an unramified
extension is uniquely determined by its degree, it ollows that
[9 A’K]= f. Hence A’--//. 2 is normal over K of degree ze, A’/9 is
totally ramified of degree e, and A’/A is unramified of degree z/f. Set
G(A’/K)=G, G(A’/A)=H, and G(A’/f2)=H. Then HH=I, [G/H[

ef, and G/H1 ]- z. This implies that for any element a of G, a be-
longs to H lH- 1, i.e. a- 1. The assertions of the lemma easily follow.

Proof of Theorem 1. Keeping the notation of Theorem 1, we
apply Lemma 1 to the extension Lilt. Recall that L-Q(,, r), r-2a

1, G(L/Q) <t} x <} x <}. Put e- e/, f=f/. Denote by f) the
unramified extension of k of degree ef and set L’=L.D=Q(, ,),
r’-2e- 1. Then Lemm I implies that there exists a totally ramified
extension F of k of degree e such that F. 9=L’, F 9= k, and G(L’/
is canonicMly isomorphic to , the inertia group of L/k. We can de-
scribe the circumstances more explicitly. We may obviously write
G(L’/Q)= <t} x <} x <’}, where t and are defined by (2) with ,--,
=r, and; , ’=.. Let denote the inertia group of L’/k. If--(t G(L/k) then ’-- (t2*} G(L’/k). Also, if --(0 then
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g2’=<0. Putf’--fq. (f’f----a). Let ] be a Frobenius automorphism
o L/k. Regarding ] as an automorphism of L/Q, we write ]-’t,
or some integers x, y. Then, ]’--(’)’0 is a Frobenius automorphism
of L’ / k and (’) l, (ef f,z). Hence G(L’ / k) @’ @’}. Notethat
B--(tg, L/l)(In2(),L’/k), where Inf denotes the inflation map of
H(L/k) into H(L’/k). Therefore, in order to prove Theorem I we may
assume that the extension L/k has a Frobenius automorphism V of order
f, f=f/, so that G(L/k)=gj(T]}. As is remarked above, we write
]=’t?, (y=0, 1).

( ) The case )=(t}, (0 _< 2 _< n 2) Suppose first that y--l, so

] ’t. Set -t. We have B--(, Lk)-- Lug-- =o- -=o Luu,
e=2--. Let (r,i)//(i,r)--{, so uu--{uu. Since uuu;-u,
we have

_
u--{:+ or some integer c. It ollows rom the relation [2,

(1.11)] that
cA )--1__ (f-bl+v+...+v

where A----5--I and S=1+5+ +(5)e-=(1--5"-)/(1--5). S
(resp. A) is exactly divisible by 2-- (resp. 2). By (3) we conclude
that 21 b. Let Y be an integer satisfying AY--b (mod2). (Since
(2, A/2)=1 and 2] b, such an integer Y does exist.) Then

=;2r-uu,=(ru)u,. Let E (resp. F) be the subfield of L over k
corresponding to @) (resp. @)) in the sense of Galois theory. We have

YB=] E.F(ru)u(u{,E/k,)(R) ((5.u) F/k, r) (___1 F/k, r),
because u- _+ 1, (ru)e rr(++"" +-)/(r, r)fl(r, r)... fl(re-, r)- +_ 1, and

--2n- --2+,E/k is unramified ({e k). Since e/ /e it follows that
N/Q(--1)--I, and so the order o the norm residue symbol (--1, F/k)
=(N/o.(-1),F/Q)=(1, F/Q) is equal to 1. Thus, BI, as required.

Suppose next that y-- 0. Then, {--{ for every a e G(L/k), so

{ e k. It follows from the Witt’s result [5, Stz 12, p. 245] that B
=(,L/k)l. (This can be also proved by the same techniques as
above. The details will appear in [4].)

(ii) The case -<}, (0<<n--3). Set r=t. Since uuu7
-u- it ollows that u= +_ 1, e=2--. Let uu--{}uu. By the re-

lation [2, (1.11)] we conclude that 1=(+1)---({;)++’"+-={;2r, T
=1+(--5)+...+(--5)-’--(1--5-)/(1+5). T is exactly divisi-
ble by 2-’, so 2lb. Let X be n integer satisfying (1+5)X
--b(mod 2). Then u({u)-,--z+uu=({u)u. Let E (resp. F) be

the subfield of L over k corresponding to @} (resp. @}) in the sense of
Galois theory. Then we have B-- E.Fu(u) (({u), E/ k,
(R)(u, F/ k, r)( +_ 1, F/ k, r). Since 21e/, the same argument as in

the case (i) yields that B1. This completes the proof of Theorem 1.

Remark. If @ <0} X <} (0 <__<n-- 2), then the computation of

invariant of the cyclotomic algebra B--(, L/k) is a bit complicated (in
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particular, for the case that (}:/:1, x:/:0, where =’t). So, it
will be dealt with in the subsequent paper.

:. Let h be the smallest non-negative integer such that k is con-
rained in Q() for some odd integer m. h=0 if and only if k/Q is
unramified. Set M=k(), f--f/Q. Then M-Q(,_) and M is
the minimal cyclotomic field containing k. If E is the maximal un-
ramified extension of k in M, then M=E(t) (he0). Suppose that he0
and k(4)/k is ramified. Then M/E is also ramified and h3. Let w

be the generator of G(M/E) (- 1). Let %-. Then either z 1 or

z--1+ 2- (rood 2). (These results follow from elementary proper-
ties of local fields and have been proved in [3].)

Theorem 2 (Yamada [3]). Notation is the same as above.
(I) If k(t)/k is ramified, then only three cases arise" i) h=0, ii)
h3, z---1 (mod 2), iii) h3, z-1+2- (mod2). For the cases
i) and ii), S(k) is the subgroup of order 2 of Br(k). For the case iii),
S(k)- 1.
(II) If k(t)/ is unramified, then S(k)- 1.

Proof. Let B--(fl, L/k) be a cyclotomic algebra over k given by
(1). Then, LM, so nh. We also keep the notation o Theorem 1.

is the inertia group of L/k. If k()/k is unramified, then either
n=2, --1 or n3, -(} or some 2. Hence, Theorem 1 yields
that B 1, whence S(k)- 1. I k(t)/k is ramified, h3, and z- 1
+2- (mod 2), then =(} for some ,(0,n--3). It ollows rom
Theorem 1 that B 1, whence S(k)- 1.

Finally suppose that k(t)/k is ramified and that either h=0, or h3,
z-l(mod2). Putl-2or h=0 and 1--h or h3. LetLbethe
unramified extension o k() of degree 2. Then L=Q(, ,_), f’
=f/Q. It turns out that e/--2 and that there is Frobenius auto-
morphism of order f=f/, whence G(L/k)-(} (}, --1,

= - 3<t<2{. Let {[={, +1. Set t-1+2m,(2, m)--l. It can
be shown that t-1 is divisible by 2 +m. Set y- (t- 1)/2 +’m. Then
the ollowing cyclotomic Mgebra B over k hs Hasse invariant 1/2"

B Luu (direct sum)
=0 =0

u%=uu, ui=l, u-;.
(For the proof, see [3].) This completes the proof of Theorem 2.

Remark. For any finite extension K of Q, S(K) is readily deter-
mined from Theorem 2 (cf. [3, Theorem 3]).
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