111. On the Characterization of the Linear Partial Differential Operators of Hyperbolic Type

By Kenji Horie
Osaka University
(Comm. by Kenjiro Shoda, m. J. A., July 12, 1973)

§1. Introduction. In this note we shall consider a linear partial differential operator $P(D)$ of degree m with real constant coefficients in n variables. By α we denote multi-indices, that is, n-tuples ($\alpha_{1}, \cdots \alpha_{n}$) of non-negative integers and by $|\alpha|$ their sum, that is $|\alpha|=\sum_{j=1}^{n} \alpha_{j}$. With $D_{j}=-\sqrt{-1} \partial / \partial x_{j}$, we set $D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}$. Then the symbol $P(D)$ represents a differential operator $P(D)=\sum_{|\alpha| \leqq m} a_{\alpha} D^{\alpha}$ and if $\left(\xi_{1}, \cdots, \xi_{n}\right) \in C^{n}$, then $P(\xi)$ does the polynomial $P(\xi)=\sum_{|\alpha| \leqslant m} a_{\alpha} \xi^{\alpha}, \xi^{\alpha}=\xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}}$. This gives a one-to-one correspondence between polynomials and differential operators with constant coefficients. We shall call the operator $P(D)$ irreducible if the polynomial $P(\xi)$ is irreducible.

The aim of this note is to characterize the linear partial differential operator $P(D)$ by the support of the solution $u(x) \in C^{\infty}\left(R^{n}\right)$ of $P(D) u(x)$ $=0$. If $u(x)$ satisfies $P(D) u(x)=0$, then $u(x)$ also satisfies $Q(D) P(D) u$ $=0$ for arbitrary differential operator $Q(D)$. So we shall consider only irreducible linear partial differential operators.

Cohoon [1] proved the following theorem:
Theorem A. There exists a nontrivial $u(x)$ in $C^{\infty}\left(R^{n}\right)$ such that $P(D) u(x)=0$ in R^{n} and such that the support of $u(x)$ is contained in $\left\{x \in R^{n} ;\left|x_{k}\right| \leqq R\right.$, for $\left.k=1,2, \cdots n-1\right\}$ if and only if $P(D)$ is of the form

$$
P(D)=a D_{n}^{m}+\sum_{|\alpha|<m} b_{\alpha} D^{\alpha}
$$

where $a(\neq 0)$ and $b_{\alpha}(|\alpha|<m)$ are real constants.
Then we ask when there exists a nontrivial $u(x)$ in $C^{\infty}\left(R^{n}\right)$ such that $P(D) u(x)=0$ in R^{n} and such that the support of $u(x)$ is contained in $\left\{x \in R^{n} ;\left|x_{k}\right| \leqq R\right.$ for $k=1, \cdots, n-2$ and $\left.\left(r\left|x_{n}\right|+R\right)^{2}-x_{n-1}^{2} \geqq 0\right\}$ for $r \geqq 0$. It is the purpose of this note to answer this question.

The author thanks Professor S. Koizumi for his helpful discussions to the material of this note.
§2. Definitions and theorem. By $P_{m}(D)$ we shall denote the principal part of $P(D)$. According to Hörmander [3] the operator $P(D)$ is called hyperbolic with respect to $N \in R^{n}$, if $P_{m}(N) \neq 0$ and if there is a constant τ_{0} such that $P(\xi+i \tau N) \neq 0$, when $\tau<\tau_{0}$ and $\xi \in R^{n}$. For the principal part $P_{m}(D)$ the definition of hyperbolicity is particularly simple by the following theorem.

Theorem. The principal part $P_{m}(D)$ of $P(D)$ is hyperbolic with respect to N if and only if $P_{m}(N) \neq 0$ and the equation

$$
P_{m}(\xi+\tau N)=0
$$

has only real roots when ξ is real.
If $P(D)$ is hyperbolic with respect to N, we shall denote by $\Gamma(P, N)$ the set of all real θ such that polynomial $P_{m}(\theta+\tau N)$ has only negative root τ. Then $\Gamma(P, N)$ is the component of N in the open set $\left\{\theta ; P_{m}(\theta)\right.$ $\neq 0\}$ and is a convex cone with vertex at 0 . By C^{*} we shall denote dual cone $\left\{x \in R^{n} ;\langle x, \theta\rangle \geqq 0, \theta \in C\right\}$ of cone C.

Let e be the vector $(0, \cdots, 0,1) \in R^{n}$. Let us introduce the domain $T_{r}=\left\{x \in R^{n} ;\left|x_{k}\right| \leqq R, k=1, \cdots n-2\right.$ and $\left.\left(r\left|x_{n}\right|+R\right)^{2}-x_{n-1}^{2} \geqq 0\right\}$, two cones $C_{r}=\left\{x \in R^{n} ; x_{n}^{2}-\left(r x_{n-1}\right)^{2}>0, x_{n}>0\right\}, C_{r}^{\prime}=\left\{x \in R^{n} ; x_{n}^{2}-\left(r x_{n-1}\right)^{2}>0, x_{n}<0\right\}$ and the half space $H_{N}=\left\{x \in R^{n} ;\langle x, N\rangle \geqq 0\right\}$.

We shall prove the following theorem.
Theorem. Suppose $P(D)$ is an irreducible linear partial differential operator of degree m. Then there exists a nontrivial $u(x)$ in $C^{\infty}\left(R^{n}\right)$ such that (i) $P(D) u(x)=0$ in R^{n}, (ii) the support of $u(x)$ is contained in T_{r} if and only if $P(D)$ is of the form

$$
\begin{equation*}
P(D)=a \prod_{i=1}^{m}\left(D_{n}+b_{i} D_{n-1}\right)+\sum_{|\alpha|<m} c_{\alpha} D^{\alpha}, \quad\left|b_{i}\right| \leqq r, \tag{1}
\end{equation*}
$$

where $a(\neq 0), b_{i}(i=1, \cdots, m)$ and $c_{\alpha}(|\alpha|<m)$ are real constants.
Theorem A is obtained by setting $r=0$ in this theorem. We show this theorem as a consequence of following two lemmas.

Lemma 1. There exists a nontrivial $u(x)$ in $C^{\infty}\left(R^{n}\right)$ which satisfies (i) and (ii) if and only if the cone C_{r} is contained in $\Gamma\left(P_{m}, e\right)$.

Lemma 2. The cone C_{r} is contained in $\Gamma\left(P_{m}, e\right)$ if and only if $P(D)$ is of the form (1).
§3. Proofs of Lemma 1 and Lemma 2. We first assume that $C_{r} \subset \Gamma\left(P_{m}, e\right)$. Let $\phi(x)$ be a C^{∞} function of Gevrey class $\delta(1<\delta<m / m-1)$ with the support in $\left\{x \in R^{n} ;\left|x_{k}\right| \leqq R, k=1, \cdots, n\right\}$. By the lemma 5.7.4 of Hörmander [3], there exists a function $U_{k}\left(\xi^{\prime}, x_{n}\right)$ which satisfies

$$
\begin{equation*}
P\left(\xi^{\prime}, D_{n}\right) U_{k}\left(\xi^{\prime}, x_{n}\right)=0, \quad \xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{n-1}\right) \tag{2}
\end{equation*}
$$

(3) $D_{n}^{j} U_{k}\left(\xi^{\prime}, 0\right)=0$, if $0 \leqq j, k<m$ and $j \neq k$,

$$
\begin{equation*}
D_{n}^{k} U_{k}\left(\xi^{\prime}, 0\right)=1, \quad \text { if } 0 \leqq k<m \tag{4}
\end{equation*}
$$

and for some constant K
(5) $\quad\left|D_{n}^{l} U_{k}\left(\xi^{\prime}, x_{n}\right)\right| \leqq K^{l+1}\left(\left|\xi^{\prime}\right|+1\right)^{l+m-k} \exp \left[K\left|x_{n}\right|\left(\left|\xi^{\prime}\right|+1\right)^{1-1 / m}\right]$
when $\left(\xi^{\prime}, x_{n}\right) \in R^{n}$ and $l=0,1,2, \cdots$.
Now let us consider

$$
\begin{equation*}
v\left(\xi^{\prime}, x_{n}\right)=\sum_{k=0}^{m-1}\left(D_{n}^{k} \hat{\phi}_{n}\left(\xi^{\prime}, 0\right)\right) U_{k}\left(\xi^{\prime}, x_{n}\right) \tag{6}
\end{equation*}
$$

where $\hat{\phi}_{n}\left(\xi^{\prime}, x_{n}\right)=\int e^{\left.-i<x^{\prime}, \xi^{\prime}\right\rangle} \phi(x) d x^{\prime}$. Using (3), (4), (5) and Paley-Wiener theorem, it follows that

$$
\begin{align*}
& \left|D_{n}^{j} v\left(\xi^{\prime}, x_{n}\right)\right| \leqq \sum_{k=0}^{m-1}\left|D_{n}^{k} \hat{\phi}_{n}\left(\xi^{\prime}, 0\right)\right| \cdot\left|D_{n} U_{k}\left(\xi^{\prime}, x_{n}\right)\right| \tag{7}\\
& \quad \leqq \sum_{k=0}^{m-1} K_{B} K^{j+1}\left(\left|\xi^{\prime}\right|+1\right)^{j+m-k} \exp \left[K\left|x_{n}\right|\left(\left|\xi^{\prime}\right|+1\right)^{1-1 / m} B\left|\xi^{\prime}\right|^{1-1 / m}\right] \\
& \quad \leqq C K_{B} K^{j+1}\left(\left|\xi^{\prime}\right|+1\right)^{j+m} \exp \left[\left(K\left|x_{n}\right|-B\right)\left|\xi^{\prime}\right|^{1-1 / m}\right]
\end{align*}
$$

for some constant C and $B \geqq R$. In particular this shows that $v\left(\xi^{\prime}, x_{n}\right)$ is in $L_{1}\left(R_{\xi^{\prime}}^{n-1}\right)$ for fixed x_{n}. We can set $u(x)=\mathscr{F}_{n}^{-1}\left[v\left(\xi^{\prime}, x_{n}\right)\right]$ where \mathscr{F}_{n}^{-1} is a partial inverse Fourier transform with respect to $\xi_{1}, \cdots, \xi_{n-1}$. Since B can be chosen arbitrary large, from (7) it follows that

$$
\begin{align*}
& \left\|u\left(x^{\prime}, x_{n}\right)\right\|_{2, k_{s}}=\left\|\left(1+\left|\xi^{\prime}\right|^{2}\right)^{s / 2} v\left(\xi^{\prime}, x_{n}\right)\right\|_{2} \tag{8}\\
& \quad \leqq\left(c K_{B} K\right)^{2} \sum_{\left|\alpha^{\prime}\right| \leq s} \int\left|\xi^{\prime}\right|^{2\left(\left|\alpha^{\prime}\right|+m\right)} \exp \left[2\left(K\left|x_{n}\right|-B\right)\left|\xi^{\prime}\right|^{1-1 / m}\right] d \xi^{\prime}<\infty .
\end{align*}
$$

Since s can be chosen arbitrary large, from (8) and Sovolev's lemma, we have

$$
u\left(x^{\prime}, x_{n}\right) \in C^{\infty}\left(R_{x^{\prime}}^{n-1}\right)
$$

From this and (5), it follows that $u(x) \in C^{\infty}\left(R^{n}\right)$.
Furthermore, from (2), (3), (4) and (6) we have

$$
\begin{equation*}
P(D) u(x)=0, \quad \text { in } R^{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{n}^{j} u\left(x^{\prime}, 0\right)=D_{n}^{j} \phi\left(x^{\prime}, 0\right), \quad 0 \leqq j<m . \tag{10}
\end{equation*}
$$

Since $\operatorname{supp} \phi\left(x^{\prime}, 0\right) \subset\left\{x \in R^{n} ;\left|x_{k}\right| \leqq R, k=1, \cdots, n-1\right.$ and $\left.x_{n}=0\right\}$, if we apply Corollary 5.3.2 of Hörmander [3], we can obtain, supp $U \cap H_{e} \subset\left\{x \in R^{n} ;\left|x_{k}\right| \leqq R, k=1, \cdots, n-1\right.$ and $\left.x_{n}=0\right\}+\Gamma\left(P_{m}, e\right)^{*}$. Similarly we have
supp $U \cap H_{(-e)} \subset\left\{x \in R^{n} ;\left|x_{k}\right| \leqq R, k=1, \cdots, n-1, x_{n}=0\right\}+\Gamma\left(P_{m},-e\right)^{*}$. Since $\Gamma\left(P_{m}, e\right)^{*} \subset C_{r}^{*}$ and $\Gamma\left(P_{m},-e\right)^{*} \subset C_{r}^{\prime *}$, we have supp $U \subset T_{r}$.

To prove the converse we consider the hyperplane $\Sigma(N)=\left\{x \in R^{n}\right.$; $\langle x, N\rangle=0\}$, where N is a vector in C_{r}. It is obvious that $\Sigma(N) \cap T_{r}$ is compact. Then we have $N \in \Gamma\left(P_{m}, e\right)$. Because by the theorem of John [2], unless $N \in \Gamma\left(P_{m}, e\right), u$ vanishes identically in $\Sigma(N)$ and by translations, it follows that u vanishes identically in R^{n}, which contradicts the assumption. This completes the proof of Lemma 1.

Proof of Lemma 2. We first assume that $C_{r} \subset \Gamma\left(P_{m}, e\right)$. Let N be the vector such that $N=\left(0, \cdots, N_{n-1}, N_{n}\right) \in C_{r}$. Let us consider the following equation with respect to ζ.
(11)

$$
P_{m}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n-2}, \zeta N_{n-1}, \zeta N_{n}\right)=0 .
$$

Suppose that for some $\left(\xi_{1}, \cdots, \xi_{n-2}, 0,0\right) \in R^{n}$ we could find nonzero complex number ζ which satisfies (11). But Theorem 5.5.3 of Hörmander [3] tells us that ζ must have been real.
Then we have
(12)

$$
\left(\xi_{1} \zeta^{-1}, \xi_{2} \zeta^{-1}, \cdots, \xi_{n-2} \zeta^{-1}, N_{n-1}, N_{n}\right) \in C_{r} .
$$

From this and the assumption we conclude that

$$
\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n-2}, \zeta N_{n-1}, \zeta N_{n}\right)
$$

is a hyperbolic direction of $P_{m}(D)$ and consequently that

$$
\begin{equation*}
P_{m}\left(\xi_{1}, \cdots, \xi_{n-2}, \zeta N_{n-1}, \zeta N_{n}\right) \neq 0 \tag{13}
\end{equation*}
$$

This contradicts that ζ is a root of equation of (11). Thus it is proved that the equation

$$
\begin{equation*}
P_{m}\left(\xi_{1}, \cdots, \xi_{n-2}, \zeta N_{n-1}, \zeta N_{n}\right)=0 \tag{14}
\end{equation*}
$$

has only $\zeta=0$ as a root. Furthermore

$$
\begin{gathered}
P_{m}\left(\xi_{1}, \cdots, \xi_{n-2}, \zeta N_{n-1}, \zeta N_{n}\right)=\sum_{|\alpha|+\beta+r=m} a_{\alpha \beta \gamma} \xi^{\prime \prime \alpha}\left(\zeta N_{n-1}\right)^{\beta}\left(\zeta N_{n}\right)^{r} \\
=\sum_{k=0}^{m-1}\left(\sum_{\substack{\mid \alpha=m-k \\
\beta+\gamma=k}} \xi^{\prime \prime \alpha} N_{n-1}^{\beta} N_{n}^{\gamma}\right) \zeta^{k}+\left(\sum_{\beta+\gamma=m} a_{0 \beta r} N_{n-1}^{\beta} N_{n}^{\gamma}\right) \zeta^{m} .
\end{gathered}
$$

We have

$$
\begin{equation*}
\sum_{\substack{|\alpha|=m-k \\ \beta+r=k}} a_{\alpha \beta r} \xi^{\prime \prime \alpha} N_{n-1}^{\beta} N_{n}^{r}=0 \tag{15}
\end{equation*}
$$

where $k=0, \cdots, m-1,\left(0, \cdots, 0, N_{n-1}, N_{n}\right) \in C_{r}$.
Let us set $\eta=N_{n-1} N_{n}^{-1}$ by $N_{n} \neq 0$. Since C_{r} is a cone, we have

$$
\begin{equation*}
\sum_{\beta=0}^{k}\left(\sum_{\substack{|\alpha|=m-k-k \\ \gamma=k-\beta}} a_{\alpha \beta \gamma} \xi^{\prime \prime \alpha}\right) \eta^{\beta}=0 \tag{16}
\end{equation*}
$$

for all $\xi^{\prime \prime}$ in R^{n-2} and η in $\left(-r^{-1}, r^{-1}\right)$. From this we conclude that $a_{\alpha \beta r}=0$ for all α in N^{n-2} with $|\alpha|=m-(\beta+\gamma)$ for all (β, γ) with $0 \leqq \beta+\gamma$ $\leqq m-1$ and $\beta \geqq 0, \gamma \geqq 0$. Thus $P_{m}(\xi)=Q\left(\xi_{n-1}, \xi_{n}\right)$ for some suitable homogeneous polynomial of degree m in two variables of ξ_{n-1} and ξ_{n}. Then by the fundamental theorem of algebra, we can find the complex numbers a and $b_{i}(i=1, \cdots, m)$ such that,

$$
\begin{equation*}
P_{m}(\xi)=a \prod_{i=1}^{m}\left(\xi_{n}+b_{i} \xi_{n-1}\right), \text { where } a \neq 0 \tag{17}
\end{equation*}
$$

Since e is a hyperbolic direction of $P_{m}(D)$, the $b_{i}(i=1, \cdots, m)$ are real constants. Let c and d be $\operatorname{Max}\left\{b_{i} ; b_{i} \geqq 0\right\}, \operatorname{Min}\left\{b_{i} ; b_{i} \leqq 0\right\}$, respectively. Then we have

$$
\begin{equation*}
\Gamma\left(P_{m}, e\right)=\left\{x \in R^{n} ; x_{n}+c x_{n-1}>0, x_{n}+d x_{n-1}>0\right\} . \tag{18}
\end{equation*}
$$

By the assumptions, it follows that $c \leqq r, d \geqq-r$. Thus, $\left|b_{i}\right| \leqq r$, for $i=1, \cdots m$.

Conversely, if $P(D)$ is of the form (1) then using (18), we conclude that $C_{r} \subset \Gamma\left(P_{m}, e\right)$.
The proof of Lemma 2 is complete.

References

[1] D. K. Cohoon: A characterization of the linear partial differential operato $P(D)$ which admit a nontrival C^{∞} solutions with support in an open prism with bounded cross section. J. Differential Equations, 8, 195-201 (1970).
[2] F. John: Non-admissible data for differential equations with constant coefficients. Comm. Pure. Appl. Math., 10, 391-398 (1957).
[3] Lars Hörmander: Linear Partial Differential Operators. Springer-Verlag, New York, Berlin (1963).

