148. On Normalizers of Simple Ring Extensions

By Shigeru Takamatsu and Hisao Tominaga
Department of Mathematics, Okayama University
(Comm. by Kenjiro Shoda, m. J. A., Nov. 12, 1973)

Throughout the present note, A will represent an (Artinian) simple ring with the center C, and B a regular subring of A with the center Z. Let V be the centralizer $V_{A}(B)$ of B in A, and N the normalizer $N_{A}(B)=\{a \in A \cdot \mid B \tilde{a}=B\}$ of B in A. As is well-known, $B_{0}=B V=B \otimes_{Z} V$ is two-sided simple. Obviously, $N \subseteq N_{A}(V)$ and $B \cdot V \cdot$ is a normal subgroup of N. We fix here a complete representative system $\left\{u_{\lambda} \mid \lambda \in \Lambda\right\}$ of N modulo $B \cdot V \cdot$. As to notations and terminologies used without mention, we follow [2].

In case $A \neq(G F(2))_{2}$, it is known that if $N=A \cdot$ then either $B=A$ or $B \subseteq C$ (see for instance [2; Proposition 8.10 (a)]). In what follows, we shall prove further results concerning N such as P. Van Praag [1] obtained for division ring extensions.

Lemma. The ring $B N=\sum_{u \in N} B u$ is a completely reducible $B-B-$ module with homogeneous components $B_{0} u_{\lambda}(\lambda \in \Lambda)$. Furthermore, every irreducible $B_{0}-B_{0}-$ module $B_{0} u_{\lambda}$ is not isomorphic to $B_{0} u_{\mu}$ for $\mu \neq \lambda$.

Proof. It is obvious that every $B u(u \in N)$ is B - B-irreducible. Now, assume that $B u$ is B - B-isomorphic to $B u_{\lambda}$ and $u \leftrightarrow b u_{\lambda}(b \in B)$. Since $B b=B, b$ is a unit of B. For every $b^{\prime} \in B$, we have $u b^{\prime} \leftrightarrow b u_{\lambda} b^{\prime}=b \cdot b^{\prime} \tilde{u}_{\lambda} \cdot u_{\lambda}$ and $b^{\prime} \tilde{u} \cdot u \leftrightarrow b^{\prime} \tilde{u} \cdot b u_{\lambda}$, and so $b \cdot b^{\prime} \tilde{u}_{2}=b^{\prime} \tilde{u} \cdot b$, whence it follows $B\left|b \tilde{u}_{2}=B\right| \tilde{u}$. Hence, we obtain $\left(b u_{\lambda}\right)^{-1} u \in V \cdot$, which implies that $u \in B \cdot V \cdot u_{\lambda}$. Conversely, every $B v u_{\lambda}\left(v \in V^{\cdot}\right)$ is B - B-isomorphic to $B u_{\lambda}$, and hence we have seen that $\underset{\lambda \in A}{\oplus} B_{0} u_{\lambda}$ is the idealistic decomposition of the $B-B$ module $B N$. Finally, if $B_{0} u_{\lambda}$ is $B_{0}-B_{0}$-isomorphic to $B_{0} u_{\mu}(\mu \neq \lambda)$ then they are $B-B$-isomorphic, which yields a contradiction.

Corollary. If $V \subseteq B$ then $B N$ is the direct sum of non-isomorphic irreducible B-B-submodules, and conversely.

Proposition 1. Assume that $B N=A$.
(1) $[A: B]_{L}=[A: B]_{R}=(N: B \cdot V \cdot)[V: Z]$.
(2) If N^{\prime} is a subgroup of N containing $B \cdot V \cdot$ then $B N^{\prime} \cap N=N^{\prime}$.
(3) If A^{\prime} is a simple intermediate ring of A / B_{0} then $A^{\prime}=B N_{A^{\prime}}(B)$.
(4) V / C is Galois.

Proof. (1) is clear by Lemma.
(2) By Lemma, $B N^{\prime}=\underset{\lambda \in \Lambda^{\prime}}{\oplus} B_{0} u_{2}$ with a suitable subset Λ^{\prime} of Λ.

Then, as is easily seen, $N^{\prime}=\bigcup_{\lambda \in A^{\prime}} B \cdot V \cdot u_{2}=B N^{\prime} \cap N$.
(3) Again by Lemma, $A^{\prime}=\underset{\lambda \in \Lambda^{\prime}}{ } B_{0} u_{2}$ with a suitable subset Λ^{\prime} of Λ. Since A^{\prime} is simple, we have then $N_{A^{\prime}}(B)=A^{\prime} \cap N=\bigcup_{\lambda \in \Lambda^{\prime}} B \cdot V \cdot u_{\lambda}$, whence it follows $A^{\prime}=B N_{A^{\prime}}(B)$.
(4) Since B is generated by its units, we obtain $J(V \mid \tilde{N})=V_{V}(N)$ $=V_{V}(B N)=C$.

Now, we are at the position to prove our theorem.
Theorem. Let A / B be a right locally finite extension such that $B N=A$.
(1) Every intermediate ring A^{\prime} of A / B_{0} is simple and $A^{\prime}-B_{0}-i r-$ reducible, and there holds $\left[A^{\prime}: B\right]_{L}=\left[A^{\prime}: B\right]_{R}=\left(N_{A^{\prime}}(B): B \cdot V \cdot\right)[V: Z]$.
(2) Let N^{\prime} be a subgroup of N containing $B \cdot V \cdot$. If $B N^{\prime} \cdot N_{A}\left(B N^{\prime}\right)$ $=A$ then N^{\prime} is a normal subgroup of N, and conversely.
(3) $N^{\prime} \mapsto B N^{\prime}$ and $A^{\prime} \mapsto N_{A^{\prime}}(B)$ are mutually converse 1-1 correspondences between the set of subgroups N^{\prime} of N containing $B \cdot V \cdot$ and the set of intermediate rings A^{\prime} of A / B_{0}.

Proof. (1) By [2; Corollary 4.5], B_{0} is a simple ring. Given a finite subset F of A, there exists a finite subset Λ^{\prime} of Λ such that $B[F]$ $\subseteq \underset{\lambda \in A^{\prime}}{\oplus} B_{0} u_{\lambda}$. Again by the right local finiteness of A / B, we can find a finite subset $\Lambda^{\prime \prime}$ of Λ such that $B\left[\left\{u_{\lambda} \mid \lambda \in \Lambda^{\prime}\right\}\right] \subseteq \bigoplus_{\lambda \in \Lambda^{\prime \prime}}^{\oplus} B_{0} u_{\lambda^{\prime}}$. Obviously, $B_{0}[F] \subseteq B_{0}\left[\left\{u_{\lambda} \mid \lambda \in \Lambda^{\prime}\right\}\right] \subseteq \oplus_{\lambda \in \Lambda^{\prime \prime}}^{\oplus} B_{0} u_{\lambda}$, which implies that A / B_{0} is (left and) right locally finite. Next, if M is an arbitrary non-zero $A-B_{0}$-submodule of A then there exists some λ such that $B_{0} u_{2} \subseteq M$ (Lemma), which means $M=A$. Then, by [2; Proposition 3.8 (b)], A^{\prime} is a simple ring. Noting that $V_{A^{\prime}}(B)=V$ and $A^{\prime}=B N_{A^{\prime}}(B)$ (Proposition 1 (3)), the other assertions are consequences of the fact mentioned just above and Proposition 1 (1).
(2) Let $A^{\prime}=B N^{\prime}$. Then, $V_{A}\left(A^{\prime}\right)$ is a subfield of the center of V. As was shown in (1), A^{\prime} is a simple intermediate ring of A / B_{0} and A^{\prime} -B_{0}-irreducible. Now, let $\left\{u_{n}^{\prime} \mid \kappa \in K\right\}$ be a complete representative system of $N_{A}\left(A^{\prime}\right)$ modulo $A^{\prime}=A^{\prime} \cdot V_{A}\left(A^{\prime}\right)$. Then, by Lemma, we have A $=\underset{\kappa \in K}{\oplus} A^{\prime} u_{k}^{\prime}$. We claim here that the last decomposition is the idealistic decomposition of A as $A^{\prime}-B_{0}$-module, too. In fact, every $A^{\prime} u_{k}^{\prime}$ is $A^{\prime}-B_{0}-$ irreducible. If $A^{\prime} u_{k}^{\prime}$ is $A^{\prime}-B_{0}$-isomorphic to $A^{\prime} u_{\nu}^{\prime}$ and $u_{\kappa}^{\prime} \leftrightarrow a^{\prime} u_{\nu}^{\prime}\left(a^{\prime} \in A^{\prime}\right)$, then the argument used in the proof of Lemma enables us to see that $\left(\alpha^{\prime} u_{\nu}^{\prime}\right)^{-1} u_{k}^{\prime} \in V_{A}\left(B_{0}\right) \subseteq A^{\prime}$. This means that $u_{\kappa}^{\prime} \in A^{\prime} \cdot u_{\nu}^{\prime}$, namely, $\nu=\kappa$. Now, let u be an arbitrary element of N. Since $A^{\prime} u$ is an irreducible $A^{\prime}-B_{0}-$ submodule of A, the last remark proves that $A^{\prime} u=A^{\prime} u_{s}^{\prime}$ for some κ. We have seen thus $N \subseteq N_{A}\left(A^{\prime}\right)$. Now, by Proposition 1 (2), $N^{\prime}=N \cap A^{\prime}$
$=N \cap A^{\prime}$, which is obviously a normal subgroup of N. The converse is almost evident.
(3) This is only a combination of (1) and Proposition 1 (2) and (3). Even the following corollary contains all the main results in [1].
Corollary. Let A / B be a right locally finite extension such that $V \subseteq B$ and $B N=A$.
(1) Every intermediate ring A^{\prime} of A / B is simple, and there holds $\left[A^{\prime}: B\right]_{L}=\left[A^{\prime}: B\right]_{R}=\left(N_{A \prime}(B): B \cdot\right)$.
(2) Let N^{\prime} be a subgroup of N containing $B \cdot$. If $B N^{\prime} \cdot N_{A}\left(B N^{\prime}\right)$ $=A$ then N^{\prime} is a normal subgroup of N, and conversely.
(3) $N^{\prime} \mapsto B N^{\prime}$ and $A^{\prime} \mapsto N_{A^{\prime}}(B)$ are mutually converse 1-1 correspondences between the set of subgroups N^{\prime} of N containing B. and the set of intermediate rings A^{\prime} of A / B.

Finally, we state the following:
Proposition 2. Assume that $[A: C]<\infty$.
(1) If $V \subseteq B$ then $(N: B \cdot)<\infty$, and the converse is true provided V is infinite.
(2) Assume that $V \subseteq B$. If $B N=A$ then V / C is Galois, and conversely.

Proof. (1) Since $C \subseteq V \subseteq B$, it is well-known that $B=V_{A}(V)$, whence it follows $N=N_{A}(V)$. The mapping $f: N \rightarrow \mathbb{G}(V, V ; C)$ defined by $u_{\mapsto} \mid \tilde{u}^{-1}$ is a group homomorphism and $\operatorname{Ker} f=V_{N}(V)=B$. Hence, $N / B \cdot$ is isomorphic to a subgroup of the finite group $\mathscr{S H}^{(}(V, V ; C)$, which yields $(N: B \cdot)<\infty$. Conversely, if ($N: B \cdot)<\infty$ then $\infty>(B \cdot V \cdot: B \cdot)$ $=\left(V^{\cdot}: B \cdot \cap V^{\cdot}\right)=\left(V^{\cdot}: Z \cdot\right)$. Now, under the supplementary assumption that V is infinite, we have $V=Z$ by [2; Lemma 3.9].
(2) Since A / B is finite (inner) Galois and V coincides with the field Z, it is known that every intermediate ring of A / B is simple ($[2$; Theorem $7.3(\mathrm{~b})])$. Now, noting that $V_{A}(B N)=C$ if and only if $B N=A$, our assertion is obvious by the proof of Proposition 1 (4).

References

[1] P. Van Praag: Groupes multiplicatifs des corps. Bull. Soc. Math. Belgique, 23, 506-512 (1971).
[2] H. Tominaga and T. Nagahara: Galois Theory of Simple Rings. Okayama Math. Lectures (1970).

