148. On Normalizers of Simple Ring Extensions

By Shigeru TAKAMATSU and Hisao TOMINAGA Department of Mathematics, Okayama University (Comm. by Kenjiro SHODA, M. J. A., Nov. 12, 1973)

Throughout the present note, A will represent an (Artinian) simple ring with the center C, and B a regular subring of A with the center Z. Let V be the centralizer $V_A(B)$ of B in A, and N the normalizer $N_A(B) = \{a \in A : | B\tilde{a} = B\}$ of B in A. As is well-known, $B_0 = BV = B \otimes_Z V$ is two-sided simple. Obviously, $N \subseteq N_A(V)$ and $B \cdot V \cdot$ is a normal subgroup of N. We fix here a complete representative system $\{u_2 | \lambda \in A\}$ of N modulo $B \cdot V \cdot$. As to notations and terminologies used without mention, we follow [2].

In case $A \neq (GF(2))_2$, it is known that if N=A then either B=A or $B\subseteq C$ (see for instance [2; Proposition 8.10 (a)]). In what follows, we shall prove further results concerning N such as P. Van Praag [1] obtained for division ring extensions.

Lemma. The ring $BN = \sum_{u \in N} Bu$ is a completely reducible B-Bmodule with homogeneous components $B_0 u_{\lambda}(\lambda \in \Lambda)$. Furthermore, every irreducible B_0 - B_0 -module $B_0 u_{\lambda}$ is not isomorphic to $B_0 u_{\mu}$ for $\mu \neq \lambda$.

Proof. It is obvious that every $Bu(u \in N)$ is *B*-*B*-irreducible. Now, assume that Bu is *B*-*B*-isomorphic to Bu_{λ} and $u \leftrightarrow bu_{\lambda}(b \in B)$. Since Bb=B, *b* is a unit of *B*. For every $b' \in B$, we have $ub' \leftrightarrow bu_{\lambda}b'=b \cdot b'\tilde{u}_{\lambda} \cdot u_{\lambda}$ and $b'\tilde{u} \cdot u \leftrightarrow b'\tilde{u} \cdot bu_{\lambda}$, and so $b \cdot b'\tilde{u}_{\lambda} = b'\tilde{u} \cdot b$, whence it follows $B|b\tilde{u}_{\lambda} = B|\tilde{u}$. Hence, we obtain $(bu_{\lambda})^{-1}u \in V$, which implies that $u \in B \cdot V \cdot u_{\lambda}$. Conversely, every $Bvu_{\lambda}(v \in V \cdot)$ is *B*-*B*-isomorphic to Bu_{λ} , and hence we have seen that $\bigoplus_{\lambda \in A} B_0 u_{\lambda}$ is the idealistic decomposition of the *B*-*B*module *BN*. Finally, if B_0u_{λ} is B_0 - B_0 -isomorphic to B_0u_{μ} ($\mu \neq \lambda$) then they are *B*-*B*-isomorphic, which yields a contradiction.

Corollary. If $V \subseteq B$ then BN is the direct sum of non-isomorphic irreducible B-B-submodules, and conversely.

Proposition 1. Assume that BN=A.

- (1) $[A:B]_L = [A:B]_R = (N:B\cdot V\cdot)[V:Z].$
- (2) If N' is a subgroup of N containing $B \cdot V \cdot$ then $BN' \cap N = N'$.
- (3) If A' is a simple intermediate ring of A/B_0 then $A'=BN_{A'}(B)$.
- (4) V/C is Galois.

Proof. (1) is clear by Lemma.

(2) By Lemma, $BN' = \bigoplus_{\substack{\lambda \in \Lambda'}} B_0 u_{\lambda}$ with a suitable subset Λ' of Λ .

Then, as is easily seen, $N' = \bigcup_{\lambda \in A'} B \cdot V \cdot u_{\lambda} = BN' \cap N.$

(3) Again by Lemma, $A' = \bigoplus_{\substack{\lambda \in A'}} B_0 u_{\lambda}$ with a suitable subset A' of A. Since A' is simple, we have then $N_{A'}(B) = A' \cap N = \bigcup_{\substack{\lambda \in A'}} B \cdot V \cdot u_{\lambda}$, whence it follows $A' = BN_{A'}(B)$.

(4) Since B is generated by its units, we obtain $J(V|\tilde{N}) = V_v(N) = V_v(BN) = C$.

Now, we are at the position to prove our theorem.

Theorem. Let A/B be a right locally finite extension such that BN=A.

(1) Every intermediate ring A' of A/B_0 is simple and $A'-B_0$ -irreducible, and there holds $[A':B]_L = [A':B]_R = (N_{A'}(B):B\cdot V\cdot)[V:Z].$

(2) Let N' be a subgroup of N containing $B \cdot V \cdot .$ If $BN' \cdot N_A(BN') = A$ then N' is a normal subgroup of N, and conversely.

(3) $N' \mapsto BN'$ and $A' \mapsto N_{A'}(B)$ are mutually converse 1-1 correspondences between the set of subgroups N' of N containing $B \cdot V \cdot$ and the set of intermediate rings A' of A/B_0 .

Proof. (1) By [2; Corollary 4.5], B_0 is a simple ring. Given a finite subset F of A, there exists a finite subset Λ' of Λ such that $B[F] \subseteq \bigoplus_{\lambda \in \Lambda'} B_0 u_{\lambda}$. Again by the right local finiteness of A/B, we can find a finite subset Λ'' of Λ such that $B[\{u_{\lambda} | \lambda \in \Lambda'\}] \subseteq \bigoplus_{\lambda \in \Lambda''} B_0 u_{\lambda}$. Obviously, $B_0[F] \subseteq B_0[\{u_{\lambda} | \lambda \in \Lambda'\}] \subseteq \bigoplus_{\lambda \in \Lambda''} B_0 u_{\lambda}$, which implies that A/B_0 is (left and) right locally finite. Next, if M is an arbitrary non-zero A- B_0 -submodule of A then there exists some λ such that $B_0 u_{\lambda} \subseteq M$ (Lemma), which means M = A. Then, by [2; Proposition 3.8 (b)], A' is a simple ring. Noting that $V_{A'}(B) = V$ and $A' = BN_{A'}(B)$ (Proposition 1 (3)), the other assertions are consequences of the fact mentioned just above and Proposition 1 (1).

(2) Let A' = BN'. Then, $V_A(A')$ is a subfield of the center of V. As was shown in (1), A' is a simple intermediate ring of A/B_0 and A'- B_0 -irreducible. Now, let $\{u'_{\kappa} | \kappa \in K\}$ be a complete representative system of $N_A(A')$ modulo $A' = A' \cdot V_A(A')$. Then, by Lemma, we have $A = \bigoplus_{\kappa \in K} A'u'_{\kappa}$. We claim here that the last decomposition is the idealistic decomposition of A as $A' - B_0$ -module, too. In fact, every $A'u'_{\kappa}$ is $A' - B_0$ -irreducible. If $A'u'_{\kappa}$ is $A' - B_0$ -isomorphic to $A'u'_{\nu}$ and $u'_{\kappa} \leftrightarrow a'u'_{\nu}(a' \in A' \cdot)$, then the argument used in the proof of Lemma enables us to see that $(a'u'_{\nu})^{-1}u'_{\kappa} \in V_A(B_0) \subseteq A' \cdot$. This means that $u'_{\kappa} \in A' \cdot u'_{\nu}$, namely, $\nu = \kappa$. Now, let u be an arbitrary element of N. Since A'u is an irreducible $A' - B_0$ -submodule of A, the last remark proves that $A'u = A'u'_{\kappa}$ for some κ . We have seen thus $N \subseteq N_A(A')$. Now, by Proposition 1 (2), $N' = N \cap A'$ $=N \cap A'$, which is obviously a normal subgroup of N. The converse is almost evident.

(3) This is only a combination of (1) and Proposition 1 (2) and (3). Even the following corollary contains all the main results in [1].

Corollary. Let A/B be a right locally finite extension such that $V \subseteq B$ and BN = A.

(1) Every intermediate ring A' of A/B is simple, and there holds $[A':B]_L = [A':B]_R = (N_{A'}(B):B').$

(2) Let N' be a subgroup of N containing B. If $BN' \cdot N_A(BN') = A$ then N' is a normal subgroup of N, and conversely.

(3) $N' \mapsto BN'$ and $A' \mapsto N_{A'}(B)$ are mutually converse 1-1 correspondences between the set of subgroups N' of N containing B. and the set of intermediate rings A' of A/B.

Finally, we state the following:

Proposition 2. Assume that $[A:C] < \infty$.

(1) If $V \subseteq B$ then $(N: B) < \infty$, and the converse is true provided V is infinite.

(2) Assume that $V \subseteq B$. If BN = A then V/C is Galois, and conversely.

Proof. (1) Since $C \subseteq V \subseteq B$, it is well-known that $B = V_A(V)$, whence it follows $N = N_A(V)$. The mapping $f: N \to \mathfrak{G}(V, V; C)$ defined by $u \mapsto V | \tilde{u}^{-1}$ is a group homomorphism and Ker $f = V_N(V) = B^{\cdot}$. Hence, N/B^{\cdot} is isomorphic to a subgroup of the finite group $\mathfrak{G}(V, V; C)$, which yields $(N: B^{\cdot}) < \infty$. Conversely, if $(N: B^{\cdot}) < \infty$ then $\infty > (B \cdot V^{\cdot} : B^{\cdot})$ $= (V^{\cdot} : B^{\cdot} \cap V^{\cdot}) = (V^{\cdot} : Z^{\cdot})$. Now, under the supplementary assumption that V is infinite, we have V = Z by [2; Lemma 3.9].

(2) Since A/B is finite (inner) Galois and V coincides with the field Z, it is known that every intermediate ring of A/B is simple ([2; Theorem 7.3 (b)]). Now, noting that $V_A(BN) = C$ if and only if BN = A, our assertion is obvious by the proof of Proposition 1 (4).

References

- P. Van Praag: Groupes multiplicatifs des corps. Bull. Soc. Math. Belgique, 23, 506-512 (1971).
- [2] H. Tominaga and T. Nagahara: Galois Theory of Simple Rings. Okayama Math. Lectures (1970).