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1. Introduction. For hypoelliptic operators with constant coeffi-
cients studies on asymptotic behavior of their spectral functions were
done by Nilsson [10], Gorakov [6] and Friberg [4] (cf. [15]). For the
case of operators with variable coefficients Nilsson [11] has studied this
problem for formally hypoelliptic operators and Smagin [12] has done
that for some class of hypoelliptic operators for which a complex power
can be defined. In this paper we shall anounce some results on that
problem and asymptotic distribution of eigenvalues for the case of
variable coefficients by a method of pseudo-differential operators (cf.
[7], [8]). Let P--P(x,D)--,o, a.(x)D" be a formally self-adjoint
linear partial differential operator with its domain C(tg), where
x=(x,..., x) is a point of real n-space R, =(,...,) is a multi-
index of which length Il-+...+ and D or D’--(--i/x)’
..(--i3/3x)’. The coefficients a(x) are supposed to be in _(/2) in

the notation of L. Schwarz for an open set /2 in R. For e R we
denote IJ=(l+... +)/, ()=1+11 and =;’.... For P(x,)

(a) X1a(x) we set P()( )=D(iD)P(x, ).
2. A class of hypoelliptic operators, theorems. We assume the

followings on P(x, )" this is written in the sum P(x,
and for any x e 9 and a and fl there exist positive constants C,,, C
and A such that
(2.1) (") (x, )1<C [po(X )1t0() ,a,

(2.1)’ ](") (X )1< C [Po(X, :)]t’l(/)

for I1>_A, where p and are some constants depending only on P(x,
and satisfying 0

_
p _< 1 /m, and

(2.2) Ipo(X,)l)_C I1"’, Om’_m for
(2.3) m’)n.
We remark that (2.3) can be removed by considering a power of
P(x, D). We assume further that C,,, C and A are bounded when
x is in a compact subset of/2. We consider the case in which po(X,
is taken real because o2 the self-adjointness of P(x,D), and assume
po(X,)/c as ]l-c. We have proved in [13] the following"
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Theorem 1. Every di]]erential operator P(x,D) satisfying (2.1)
(2.2) is hypoelliptic in 12.

We denote P-P(x, D) a self-adjoint realization in L(9) of P with
the domain C(9) and (P-2)- the resolvent o P or 2eR/

{2" 2 e R, 20} which is definable as a bounded operator in L(9) by
Theorem 12.7 of [1], p. 184.

Theorem 2. Under (2.1) (2. 3) (P--2)- has an integral kernel
G(x,y) of continuous Carleman type (cf. [2] p. 5) and there are
g(x, y, ) ]=0, 1, 2, ., in C(t9 9) such that asymptotically
(2.4) IG(x, Y)-.=o g(x, y, ,)1_ C(-)-(’)

uniformly for Ix-Yl (-,)_d and (x, y) e KK, Kc 9, where
s(a, k)--a(p--)(k+ 1) +max {a, a(p-)(k+ 1)}, go(x, x, ,)

(2u)-l" (po(X, )--2)-d
JRn

and the estimates [g(x, y, ,)I<_C(-,)-(-)- hold for any a such that
0 a_< 1-- n/re’. The contact operator p0 p(xo, D) at x satisfies also
(2.1) (2. 3) and hence hypoelliptic by Theorem 1. The existence of the
spectral functions e(x, y, t) and e(x, y, t) of P and p0 respectively is
proved under (2.1)(2.2) and we have by adding (2.3)

G(x, y) --.[, (t- 2)-dt(x, y, t), (cf. [2] pp. 5-7).

By the theorem of Nilsson [10] .Theorem I (p. 530) it holds that or the
spectral function oi p0

C-t (log t)

_
e(x, x, t)_ Ct (log t)

where b and r are a positive and a non-negative integer respectively.
Theorem :}. Assume b >_n/m’--(1--n/m’)(p--) adding the same

assumption of Theorem 2. Then we have for the spectral function of
P
(2.5) e(x, y, t)-o(1) for x:/:y, t-+c
(2.5)’ C-t (log t)

_
e(x, x, t)

_
Ct (log t)(t c)

for some positive number b and non-negative integer r.

Theorem 4. Assume furthermore that (P+iI)- is a compact

L(9) and Vo(t, 9)=[ [ ddx, then we haveoperator on
JDJpo(x,)t

(2.6) N(t) ,<t 1 CVo(t, 9) + o(1)V,(t, 9) t-- + c.

:). Outline of proof of theorems. The proof of the theorems is
obtained from ollowing series of lemmas. First we construct a para-
metrix E of P(x, D)--, (, e R/) with which we compare G(x, y). Let
q--q(x,,,), ]--0, 1,2, ..., be defined successively in the ollowing"

for p--po(X, )--, (, e R+)
(3.1) q0 1/p
(3.2) q:-- --(1/p)(pq_+ -]r+= P(r)qt(r)) for I[>_A.
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Let Q.(x, y, ) be the distribution kernel (cf. [9] pp. 140-1) correspond-
ing to the distribution"

C(/2) u-.(2)-f q(x, , )ex,()d,
JRn

where fi() is the Fourier transform of u. Remarking that p_< 6(--
(Ipo]+l)- or II_A, and 2/(x)=min. (--2m(x),--1), where m(x)
=sup. Ipo(X, )], and the number a should be taken in the interval
Oal--n/m’ for the integrability o (Ipol+l)-+, we have

Lemma 1. Assume (2.1) (2. 2)
(1) For ](1/(p--)){n/(1--a)m’--l}, Oa<_l--n/m’, we have

Q(x, y, 2) e C(129) and IQ(x, y, 2)I<_C(-2)-(-)/ for 2l(x), uni-
formly on (x, y) e K K" K [2.

(2) For ]x--yl(--2)>_dO we have Q(x, y, ) e C(12 [2) and for
any >_0 ]D’Du"Qj(x, y,)I_C(-2)-a{(p-)+i-Ir’l} for l(x), uniformly
on (x, y) e KK" Kc

Let F(x, y, ) be the distribution kernel corresponding to the dis-
tribution"

C(9) u-(2)-nf ,=o q(x, , 2)e<x,>()d.
R

We define the distribution E of which kernel is a cutting of
F(x, y, 2)" E(x, y, 2)- 90(Ix--y[ (-2)a)F (x, y, 2), where 90(x)
e C(I x I< d’).

Lemma 2. Assume (2.1)(2.3). Then we have (P(x,D)--2)E
=6(x--y) +w, and ]w(x, y, 2)]_<C(-2)-a(p-)(+), where oo(x, y, 2) is the
kernel of the distribution w and to be as smooth as we wish.

The existence o the resolvent kernel G(x,y) of continuous
Carleman type is derived rom (P-2)-le H,(/2) by (2.3) and we have
the ollowing lemma rom which Theorem 2 is immediate.

Lemma 3. Under (2.1)(2.3) we have the estimate
(3.3) ]G(x, y)--E(x, y, 2)[_ C(-2)-(,) 2 </(x),
uniformly on (x, y) e K K" K9, where s(k, s) is that in the state-
ment of Theorem 2, and this is estimated by any power of (-) for
xg=y.

Let E(x, y, 2) and G(x, y) are the parametrix and the resolvent
kernel of the contact operator p0 respectively. We shall use the fol-
lowing urther result of Nilsson [10]"

(d/ dt)e(x, x, t) o(1)t- (log t) t--. +
We can prove a similar statement as (3.3) for G(x, y) and E(x, y,

because of P(x,D) having (2.1)(2.2). Using these results and the
act E(x, x, ) E(x, x, ) go(x, x, ), we have

Lemma 4. There is a positive constant c (actually c _a(p--6)) such
that
(3.4) ]G,(x, x)-G(x, x)[_ 0(1)(-2)-(-2)- (log (-]))* --c.
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To obtain (2.5)’ in Theorem 3 from (3.4) we may use Tauberian theorem
of Ganelius [5] Theorem 2, p. 217, and have

e(x, x, t) e(x, x, t)]_ O(1)t (log t)r-1 to + c
rom which (2.5)’ is immediate. (2.5) can be derived from (2) of
Lemma 2.

When (/5 + ii)- is a compact operator, e(x, y, t)= (x)(y)
where , ]-- 0, 1, 2, ., is an orthonormal set of eigenfunctions with
eigenvalues 2. Therefore under the assumptions of Theorem 4 we
have (2.6) by integrating (2.5)’ and noting that

e(x, x, t) (2)- d.
JpO(xo,)<t
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