11. Note on Some Whitehead Products

By Yasutoshi NOMURA

College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1974)

1. Introduction. For standard generators $\theta \in \pi_q(S^n)$ the problem whether Whitehead products $[\theta, \iota_n]$ are 0 or not has been investigated by various authors [1], [2], [7], [8]. In this note we are concerned with the question whether $[\theta, \iota_n] \in \theta_* \pi_{n+q-1}(S^q)$ or not. Following the Toda notation [13] our main result is stated as follows.

Theorem. $[\theta, \iota_n]$ does not lie in the image of $\theta_*: \pi_{n+q-1}(S^q) \rightarrow \pi_{n+q-1}(S^n)$ for the following θ :

$$\begin{split} &\eta_n, n \equiv 0, 1 \bmod 4 \ and \ n \geq 5; \ \eta_n^2, n \equiv 0 \mod 4; \nu_n, n \equiv 1, 3 \mod 8 \ and n \\ &\geq 9 \ or \ n \equiv 0 \mod 2 \ and \ n \geq 6; \nu_n^2, n \equiv 2 \mod 4 \ and \ n \geq 6; \ \sigma_n, n \equiv 1 \mod 4 \\ &and \ n \geq 13 \ or \ n \equiv 0 \mod 2 \ and \ n \geq 10; \ 8\sigma_n, n \equiv 2 \mod 4 \ and \ n \geq 10; \ \varepsilon_n, n \\ &\equiv 1 \mod 4 \ and \ n \geq 13; \ \bar{\nu}_n, n \equiv 1 \mod 4 \ and \ n \geq 13; \ \mu_n, n \equiv 1 \mod 4 \ and \\ &n \geq 13; \ \rho_n, n \equiv 1 \mod 4 \ and \ n \geq 21; \ \kappa_n, n \equiv 1 \mod 4 \ and \ n \geq 21; \ \omega_n, n \equiv 1 \\ &\mod 4 \ and \ n \geq 21; \ \mu_n, n \equiv 1 \mod 4 \ and \ n \geq 21; \ \zeta_n, n \equiv 0 \mod 2 \ and \ n \geq 6; \\ &\kappa_n, n \equiv 1 \mod 4 \ and \ n \geq 25 \ or \ n \equiv 0 \mod 2 \ and \ n \geq 8; \ \bar{\zeta}_n, n \equiv 0 \mod 2 \ and \\ &n \geq 6; \nu_n^*, n \equiv 0 \mod 2 \ and \ n \geq 18; \ \eta_n \sigma_{n+1}, n \equiv 0, 1 \mod 4 \ and \ n \geq 12; \ \eta_n \mu_{n+1}, n \\ &\equiv 0 \mod 4 \ and \ n \geq 12; \ \eta_n \rho_{n+1}, n \equiv 0, 1 \mod 4 \ and \ n \geq 20; \ \eta_n \eta_{n+1}^*, n \equiv 0 \mod 4 \\ &and \ n \geq 24; \ \eta_n \bar{\mu}_{n+1}, n \equiv 0 \mod 4 \ and \ n \geq 24. \end{split}$$

Consequently, from a theorem of James [4] we may deduce

Corollary. There exist no Poincaré complexes of the form $(S^n \cup e^{q+1}) \cup e^{n+q+1}$, where θ are elements exhibited in Theorem.

2. Special cases of Toda's propositions. Some of the following lemmas are obtained as corollaries of Propositions 11.10 and 11.11 of Toda [13], but proofs may be given which are based on the results of James [3], Kervaire [6] and Paechter [12].

Lemma 2.1. For $n \equiv 0 \mod 4$, $n \geq 4$, there exists $\tau_{n-1} \in \pi_{2n-1}(S^{n-1})$ such that $E\tau_{n-1} = [\eta_n, \iota_n]$ and $H(\tau_{n-1}) = \eta_{2n-3}^2$.

Remark. This is obtained from Proposition 11.10, i) of [13] for $\alpha = \eta_{2n-4}$. According to [13], [10] we may take $\tau_3 = \nu' \eta_6$, $\tau_7 = \sigma' \eta_{14}$, $\tau_{11} = \theta'$, $\tau_{15} \equiv \eta^{*\prime} \mod E \pi_{30}(S^{14})$ and $\tau_{19} = \overline{\beta}$.

Proof. Introduce the diagram

in which row and columns are exact and the diagram commutes up to sign by James [3]. The values of homotopy groups of Stiefel manifolds are taken from Paechter [12]. We see that j is bijective, hence we may find $t \in \pi_{n+1}(R_{n+1}, R_{n-1})$ with $\partial_2 t = \eta_{n-2}^2$. Since $H_3 E^2 J \partial_1 t = 0$, there is a $t' \in \pi_{2n-2}(S^{n-2})$ with $E^3 t' = E^2 J \partial_1 t$. Since $E : \pi_{2n-1}(S^{n-1}) \to \pi_{2n}(S^n)$ is monic by $[\eta_{n-1}^2, \iota_{n-1}] = 0$, it follows that $\tau_{n-1} = J \partial_1 t - Et'$ is what we wanted.

We now see from the well known information of vector fields on spheres that, if we write $n+1=m\cdot 2^c\cdot 16^d$ where *m* is $\mathrm{odd}\geq 3$ and $0\leq c\leq 3$ then there exists $\tau_{n-\rho+1}^{(\rho-1)}\in\pi_{2n-\rho}(S^{n-\rho+1}), \rho=2^c+8d$, such that $[\iota_n,\iota_n]=E^{\rho-1}\tau_{n-\rho+1}^{(\rho-1)}$ and $H(\tau_{n-\rho+1}^{(\rho-1)})\neq 0$ in $\pi_{2n-\rho}(S^{2n-2\rho+1})$. Special cases of this fact are needed in the sequel.

Consider the bundles $U_{n+1} \rightarrow S^{2n+1}$ and $Sp_{n+1} \rightarrow S^{4n+3}$ with characteristic classes $\gamma'_{2n} \in \pi_{2n}(U_n)$, $\gamma''_{4n+2} \in \pi_{4n+2}(Sp_n)$. In the light of the results of Ôguchi [11] and James-Whitehead [5] we may take for $\tau_{2n}^{(1)} \in \pi_{4n}(S^{2n})$ and $\tau_{4n}^{(3)} \in \pi_{8n+2}(S^{4n})$ (n: even) the images under Hopf-Whitehead homomorphisms.

Lemma 2.2. For *n* even, $\tau_{2n}^{(1)}$ is of order 2 and $E\tau_{2n}^{(1)} = [\iota_{2n+1}, \iota_{2n+1}]$, $H(\tau_{2n}^{(1)}) = \eta_{4n-1}$.

Remark. This lemma is related to Proposition 11.10, ii) of [13] with $\alpha = \iota_{4n-2}$. According to [13, 10], we may take $\tau_4^{(1)} = \nu_4 \eta_7, \tau_8^{(1)} = \sigma_8 \eta_{15}$ $+ \bar{\nu}_8 + \varepsilon_8, \tau_{12}^{(1)} = \theta, \tau_{16}^{(1)} \equiv \eta_{16}^* + \omega_{16} \mod \sigma_{16} \mu_{23}, \tau_{20}^{(1)} = \bar{\beta}$. Note that $\pi_{2n}(R_{2n}) = (Z_2)^3$ or $(Z_2)^2$ by [6].

Lemma 2.3. For *n* even, $E^{3}\tau_{4n}^{(3)} = [\iota_{4n+3}, \iota_{4n+3}]$ and $H(\tau_{4n}^{(3)}) = r\nu_{8n-1}$, where $r = \pm 1, \pm 3$.

Remark. According to [13], [9] we may take $\tau_8^{(3)} = \sigma_8 \nu_{15}, \tau_{16}^{(3)} = \nu_{16}^* + \xi_{16}, [\iota_{23}, \iota_{23}] = E^3 \sigma_{20}^*.$

Lemma 2.4. For $n \equiv 0 \mod 4$, $n \geq 4$, $\pi_{2n+3}(U_{n-1}) \cong \pi_{2n+3}(U_n)$, $\pi_{2n+3}(U_n)$ is cyclic with generator $\gamma'_{2n}\nu_{2n}$ and $\pi_{2n+3}(U_{n-1})$ is generated by u_{2n+3}^{n-1} whose image under the J-homomorphism is denoted by $\bar{\tau}_{2n-2} \in \pi_{4n+1}(S^{2n-2})$. Then $E^3\bar{\tau}_{2n-2} = [\nu_{2n+1}, \iota_{2n+1}]$ and $H(\bar{\tau}_{2n-2}) = \nu_{4n-5}^2$.

3. Proof of Theorem.

Proposition 3.1. Suppose that $\beta \in \pi_q(S^{4k+1})$ satisfies $\eta^2_{8k-3}(E^{4k-2}\beta) \neq 0$, where $q \leq 8k-4$. If $E^2: \pi_{q+4k-3}(S^{q-2}) \to \pi_{q+4k-1}(S^q)$ is epic (e.g., $q \geq 4k+2$), then $[\eta_{4k}\beta, \iota_{4k}] \notin \eta_{4k}\beta\pi_{q+4k-1}(S^q)$.

Proof. We may write $\beta = E^2 \beta'$. By Lemma 2.1, $[\eta_{4k}\beta, \iota_{4k}] = [\eta_{4k}, \iota_{4k}] E^{4k-1}\beta = E(\tau_{4k-1}E^{4k-2}\beta)$. Assume that $E(\tau_{4k-1}E^{4k-2}\beta) = E(\eta_{4k-1}E(\beta'\alpha))$. Then, since the kernel of $E: \pi_{q+4k-2}(S^{4k-1}) \rightarrow \pi_{q+4k-1}(S^{4k})$ coincides with $[\pi_q(S^{4k-1}), \iota_{4k-1}]$, we have

 $\tau_{4k-1}E^{4k-2}\beta = \eta_{4k-1}E(\beta'\alpha) + [\iota_{4k-1}, \iota_{4k-1}]E^{4k-2}\gamma, \gamma \in \pi_q(S^{4k-1}).$ By taking the Hopf invariant of both sides, we have a contradiction $\eta_{8k-3}^2(E^{4k-2}\beta) = 0.$

Proposition 3.2. Suppose that $\theta \in \pi_q(S^{4k+1})$ satisfies $\eta_{8k-1}E^{4k-1}\theta \notin 2\pi_{q+4k-1}(S^{8k-1})$ (e.g. $\eta_{8k-1}E^{4k-1}\theta \neq 0$ and the order of each element of $\pi_{q+4k-1}(S^{8k-1})$ equals 2 or is prime to that of θ), where $q \leq 8k-2$. If $E^2: \pi_{q+4k-2}(S^{q-2}) \rightarrow \pi_{q+4k}(S^q)$ is epic (e.g. $q \geq 4k+3$), then $[\theta, \iota_{4k+1}] \notin \theta\pi_{q+4k}(S^q)$.

Proof. Assume that $[\theta, \iota_{4k+1}] = \theta E^2 \alpha$, $\alpha \in \pi_{q+4k-2}(S^{q-2})$. Since $[\theta, \iota_{4k+1}] = [\iota_{4k+1}, \iota_{4k+1}]E^{4k}\theta = E(\tau_{4k}^{(1)}E^{4k-1}\theta)$ by Lemma 2.2 and since the kernel of $E: \pi_{q+4k-1}(S^{4k}) \rightarrow \pi_{q+4k}(S^{4k+1})$ is generated by $[\pi_q(S^{4k}), \iota_{4k}]$, we have, for $\bar{\theta}$ with $E^2\bar{\theta} = \theta$,

 $\begin{aligned} \tau_{4k}^{(1)}E^{4k-1}\theta = & E(\bar{\theta}\alpha) + [\iota_{4k}, \iota_{4k}]E\gamma, \qquad \gamma \in \pi_{q+4k-2}(S^{8k-2}).\\ \text{Taking the Hopf invariant of both sides yields } \eta_{8k-1}E^{4k-1}\theta \in 2\pi_{q+4k-1}(S^{8k-1}),\\ \text{which contradicts our assumption.} \end{aligned}$

Proposition 3.3. Suppose $E\theta \in \pi_q(S^n)$ satisfies $2E^{n-1}\theta \neq 0$, where n is even and $q \ge n+1$. Then $[E\theta, \iota_n] \notin (E\theta)_*\pi_{n+q-1}(S^q)$.

Proof. Assume $[E\theta, \iota_n] = (E\theta)\alpha$; then $\alpha = E\alpha'$ for some $\alpha' \in \pi_{n+q-2}(S^{q-1})$. Taking the Hopf invariant, we get $2E^{n-1}\theta = 0$.

Proposition 3.4. Let $n \equiv 2 \mod 4$, $n \geq 6$. Then $[\nu_n^2, \iota_n] \notin \nu_n^2 \pi_{2n+5}(S^{n+6})$.

Proof. By Proposition 11.11, ii) of Toda [13], there is a $\tilde{\nu}_n \in \pi_{2n+3}(S^{n-2})$ such that $[\nu_n^2, \iota_n] = E^2 \tilde{\nu}_n$ and $H(\tilde{\nu}_n) \equiv \varepsilon_{2n-5}$. Assume that $[\nu_n^2, \iota_n] = \nu_n^2 E^2 \alpha$, which implies that there is an integer x such that $E \tilde{\nu}_n = E(\nu_{n-2}^2 E \alpha) + x[\sigma_{n-1}, \iota_{n-1}] = E(\nu_{n-2}^2 E \alpha) + x(E\tau_{n-2}^{(1)})\sigma_{2n-3}$ by Lemma 2.2. It follows that

 $\tilde{\nu}_n = \nu_{n-2}^2 E \alpha + x \tau_{n-2}^{(1)} \sigma_{2n-4} + y[\bar{\nu}_{n-2}, \iota_{n-2}] + z[\varepsilon_{n-2}, \iota_{n-2}]$

for some integers y and z. This leads to a contradiction $\epsilon_{2n-5} \equiv x\eta_{2n-5}\sigma_{2n-4} = x(\bar{\nu}_{2n-5} + \epsilon_{2n-5}) \eta_{2n-5}\sigma_{2n-4}$ for $n \ge 10$.

We now proceed to prove the theorem. Take $\beta = \iota_{4k+1}$ $(k \ge 3)$ in Proposition 3.1. Since any element of $\pi_{8k-1}(S^{4k})$ is expressible as $E\gamma + x[\iota_{4k}, \iota_{4k}]$, we see that $E^2: \pi_{8k-2}(S^{4k-1}) \to \pi_{8k}(S^{4k+1})$ is epic. Thus the assertion for $[\eta_{4k}, \iota_{4k}]$ (k>2) follows. The case k=2 follows from the fact that $[\eta_8, \iota_8] = (E\sigma')\eta_{15}$ and $\eta_8\sigma_9 = (E\sigma')\eta_{15} + \bar{\nu}_8 + \epsilon_8$. Applying Proposition 3.1 to $\beta = \eta_{4k+1}$ $(k\ge 2)$, σ_{4k+1} $(k\ge 3)$, μ_{4k+1} $(k\ge 3)$, ρ_{4k+1} $(k\ge 5)$, η_{4k+1}^* $(k\ge 6)$, $\begin{array}{l} \mu_{4k+1} \quad (k \ge 6) \quad \text{and} \quad \text{observing} \quad \text{relations} \quad \eta_{8k-3}^3 = 4\nu_{8k-3}, \quad \eta_{8k-3}^2\sigma_{8k-1} \\ = \nu_{8k-3}^3 + \eta_{8k-3}\varepsilon_{8k-2}, \quad \eta_{8k-3}^2\mu_{8k-1} = 4\zeta_{8k-3}, \quad \eta_{8k-3}^2\rho_{8k-1} = \sigma_{8k-3}\eta_{8k+4}\mu_{8k+5}, \quad \eta_{8k-3}^2\eta_{8k-1}^* \\ = 4\nu_{8k-3}^*, \quad \eta_{8k-3}^2\mu_{8k-1} = 4\bar{\zeta}_{8k-3}, \text{ the cases involving } \eta_{4k} \text{ are settled.} \end{array}$

We may apply Proposition 3.2 by taking for $\theta \eta_{4k+1}$ $(k \ge 1)$, σ_{4k+1} $(k \ge 3)$, $\eta_{4k+1}\sigma_{4k+2}$ $(k \ge 3)$, $\bar{\nu}_{4k+1}$ $(k \ge 3)$, ε_{4k+1} $(k \ge 3)$, μ_{4k+1} $(k \ge 3)$, κ_{4k+1} $(k \ge 5)$, μ_{4k+1} $(k \ge 5)$, ρ_{4k+1} $(k \ge 5)$, $\eta_{4k+1}\rho_{4k+2}$ $(k \ge 5)$, ω_{4k+1} $(k \ge 5)$, κ_{4k+1} $(k \ge 6)$. Here we note that $\eta_{8k-1}\kappa_{8k} = \bar{\varepsilon}_{8k-1} \notin 2\pi_{8k+14}(S^{8k-1}) = \{2\rho_{8k-1}\} + Z_{15}$, $\eta_{8k-1}\rho_{8k}$ $= \sigma_{8k-1}\mu_{8k+6}$, $\eta_{8k-1}\bar{\mu}_{8k} \notin 2\pi_{8k+17}(S^{8k-1}) = \{2\nu_{8k-1}^*\}$.

We shall show that $[\nu_{8k+1}, \iota_{8k+1}] \notin \nu_{8k+1} \pi_{16k+4}(S^{8k+4}), k \ge 1$. Assume $[\nu_{8k+1}, \iota_{8k+1}] = \nu_{8k+1} \alpha$. Since $[\iota_{8k}, \iota_{8k}]$ is of infinite order, we may write $\alpha = E^4 \alpha', \ \alpha' \in \pi_{16k}(S^{8k})$. By Lemma 2.4, $E^3 \bar{\tau}_{8k-2} = E^3(\nu_{8k-2}E\alpha')$, and $\pi_{16k+5}(S^{16k+1}) = \pi_{16k+4}(S^{16k-1}) = 0$ gives

$$\pi_{16k+1}(S^{8k-2}) \xrightarrow{E} \pi_{16k+2}(S^{8k-1}) \xrightarrow{E} \pi_{16k+3}(S^{8k}) \xrightarrow{E} \pi_{16k+4}(S^{8k+1}),$$

in which the kernel of the first E is generated by $[\nu_{8k-2}^2, \iota_{8k-2}]$, so that we get $\bar{\tau}_{8k-2} = \nu_{8k-2} E \alpha' + x[\nu_{8k-2}^2, \iota_{8k-2}]$. This is a contradiction, because the Hopf invariant of the right hand side is 0.

Next we show that $[\nu_{8k+3}, \iota_{8k+3}] \notin \nu_{8k+3}\pi_{16k+8}(S^{8k+6}), k \ge 1$. Assume that $[\nu_{8k+3}, \iota_{8k+3}] = \nu_{8k+3}\alpha$. Since $\pi_{16k+5}(S^{8k+3})$ is finite, $E: \pi_{16k+4}(S^{8k+2}) \rightarrow \pi_{16k+5}(S^{8k+3})$ is epic, hence $\alpha = E^4\alpha'$. By Lemma 2.3, we have $E^3(\tau_{8k}^{(3)}\nu_{16k+2}) = E^3(\nu_{8k}E\alpha')$. Since $\pi_{16k+9}(S^{16k+5}) = \pi_{16k+8}(S^{8k+3}) = 0$, it follows that $\tau_{8k}^{(2)}\nu_{16k+2} = \nu_{8k}E\alpha' + x[\nu_{8k}^2, \iota_{8k}]$. By taking the Hopf invariant, a contradiction arises.

Finally we show that, for $n \equiv 2 \mod 4$, $n \geq 10$, $[8\sigma_n, \iota_n] \notin 8\sigma_n \pi_{2n+6}(S^{n+7})$, which completes the proof of the theorem. By Proposition 11.11, (ii) of Toda [13] there exists $\beta \in \pi_{2n+4}(S^{n-2})$ such that $[8\sigma_n, \iota_n] = E^2\beta$, $H(\beta) \in \{\eta_{2n-5}, 2\iota_{2n-4}, 8\sigma_{2n-4}\}$, i.e., $H(\beta) \equiv \mu_{2n-5} \mod \eta_{2n-5}\pi_{2n+4}(S^{2n-4})$. Assume that $[8\sigma_n, \iota_n] = E^2(8\sigma_{n-2}E\alpha)$, $\alpha \in \pi_{2n+3}(S^{n+4})$. Then

 $E\beta \equiv E(8\sigma_{n-2}E\alpha) \mod \{ [\nu_{n-1}, \iota_{n-1}], [\varepsilon_{n-1}, \iota_{n-1}] \}.$ Since the indeterminacy is equal to $\{ (E\tau_{n-2}^{(1)})\bar{\nu}_{2n-3}, (E\tau_{n-2}^{(1)})\varepsilon_{2n-3} \}$ by Lemma 2.2, we get

 $\beta \equiv 8\sigma_{n-2}E\alpha \mod \{\tau_{n-2}^{(1)}E\pi_{2n+3}(S^{2n-5}), [\iota_{n-2}, \iota_{n-2}]\pi_{2n+3}(S^{2n-5})\},\$ which leads to a contradiction in taking the Hopf invariant (Note that, for n=10 $\pi_{24}(S^{15})=(Z_2)^3$).

Added in proof. Using Proposition 11.10, i) of [13] we can show that, for $E^{2}\alpha \in \pi_{q}(S^{n})$ of order 2 with $\eta_{2n-3}(E^{n-1}\alpha) \neq 0$, where $n \equiv 0 \mod 4$, $n+2 \leq q \leq 2n-5$, we have $[E^{2}\alpha, \iota_{n}] \notin (E^{2}\alpha)\pi_{n+q-1}(S^{q})$. This may be applied to ε_{n} $(n \geq 16)$, $\overline{\nu}_{n}(n \geq 16)$, μ_{n} $(n \geq 16)$, κ_{n} $(n \geq 20)$ and $\overline{\mu}_{n}$ $(n \geq 24)$.

References

 P. J. Hilton: A note on the P-homomorphism in homotopy groups of spheres. Proc. Cambridge Phil. Soc., 51, 230-233 (1955).

Y. NOMURA

- W. C. Hsiang, J. Levine, and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in Euclidean space. Topology, 3, 173-181 (1965).
- [3] I. M. James: On the iterated suspension. Quart. J. Math., 5, 1-10 (1954).
- [4] -----: Note on cup-products. Proc. Amer. Math. Soc., 8, 374-383 (1957).
- [5] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres. I. Proc. London Math. Soc., 4, 196-218 (1954).
- [6] M. A. Kervaire: Some nonstable homotopy groups of Lie groups. Illinois J. Math., 4, 161-169 (1960).
- [7] L. Kristensen and I. Madsen: Note on Whitehead products in spheres. Math. Scand., 21, 301-314 (1967).
- [8] M. Mahowald: Some Whitehead products in (S^n) . Topology, 4, 17-26 (1965).
- [9] M. Mimura: On the generalized Hopf homomorphism and the higher composition, Part II. $\pi_{n+i}(S^n)$ for i=21 and 22. J. Math. Kyoto Univ., 4, 301– 326 (1965).
- [10] M. Mimura and H. Toda: The (n+20)-th homotopy groups of *n*-spheres. J. Math. Kyoto Univ., 3, 37-58 (1963).
- K. Ôguchi: A generalization of secondary composition and its application.
 J. Fac. Sci., Univ. of Tokyo, Sec. I., 10, 29-79 (1963).
- [12] G. F. Paechter: The groups $\pi_r(V_{n,m})$. I. Quart. J. Math., 7, 249–268 (1956).
- [13] H. Toda: Composition Methods in Homotopy Groups of Spheres. Princeton (1962).