11. Note on Some Whitehead Products

By Yasutoshi Nomura
College of General Education, Osaka University
(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1974)

1. Introduction. For standard generators $\theta \in \pi_{q}\left(S^{n}\right)$ the problem whether Whitehead products $\left[\theta, \iota_{n}\right]$ are 0 or not has been investigated by various authors [1], [2], [7], [8]. In this note we are concerned with the question whether $\left[\theta, \iota_{n}\right] \in \theta_{*} \pi_{n+q-1}\left(S^{q}\right)$ or not. Following the Toda notation [13] our main result is stated as follows.

Theorem. $\left[\theta, \iota_{n}\right]$ does not lie in the image of $\theta_{*}: \pi_{n+q-1}\left(S^{q}\right)$ $\rightarrow \pi_{n+q-1}\left(S^{n}\right)$ for the following θ :
$\eta_{n}, n \equiv 0,1 \bmod 4$ and $n \geqq 5 ; \eta_{n}^{2}, n \equiv 0 \bmod 4 ; \nu_{n}, n \equiv 1,3 \bmod 8$ and n $\geqq 9$ or $n \equiv 0 \bmod 2$ and $n \geqq 6 ; \nu_{n}^{2}, n \equiv 2 \bmod 4$ and $n \geqq 6 ; \sigma_{n}, n \equiv 1 \bmod 4$ and $n \geqq 13$ or $n \equiv 0 \bmod 2$ and $n \geqq 10 ; 8 \sigma_{n}, n \equiv 2 \bmod 4$ and $n \geqq 10 ; \varepsilon_{n}, n$ $\equiv 1 \bmod 4$ and $n \geqq 13 ; \bar{\nu}_{n}, n \equiv 1 \bmod 4$ and $n \geqq 13 ; \mu_{n}, n \equiv 1 \bmod 4$ and $n \geqq 13 ; \rho_{n}, n \equiv 1 \bmod 4$ and $n \geqq 21 ; \kappa_{n}, n \equiv 1 \bmod 4$ and $n \geqq 21 ; \omega_{n}, n \equiv 1$ $\bmod 4$ and $n \geqq 21 ; \bar{\mu}_{n}, n \equiv 1 \bmod 4$ and $n \geqq 21 ; \zeta_{n}, n \equiv 0 \bmod 2$ and $n \geqq 6$; $\bar{\kappa}_{n}, n \equiv 1 \bmod 4$ and $n \geqq 25$ or $n \equiv 0 \bmod 2$ and $n \geqq 8 ; \bar{\zeta}_{n}, n \equiv 0 \bmod 2$ and $n \geqq 6 ; \nu_{n}^{*}, n \equiv 0 \bmod 2$ and $n \geqq 18 ; \eta_{n} \sigma_{n+1}, n \equiv 0,1 \bmod 4$ and $n \geqq 12 ; \eta_{n} \mu_{n+1}, n$ $\equiv 0 \bmod 4$ and $n \geqq 12 ; \eta_{n} \rho_{n+1}, n \equiv 0,1 \bmod 4$ and $n \geqq 20 ; \eta_{n} \eta_{n+1}^{*}, n \equiv 0 \bmod 4$ and $n \geqq 24 ; \eta_{n} \mu_{n+1}, n \equiv 0 \bmod 4$ and $n \geqq 24$.

Consequently, from a theorem of James [4] we may deduce
Corollary. There exist no Poincaré complexes of the form $\left(S^{n} \bigcup_{\theta} e^{q+1}\right) \cup e^{n+q+1}$, where θ are elements exhibited in Theorem.
2. Special cases of Toda's propositions. Some of the following lemmas are obtained as corollaries of Propositions 11.10 and 11.11 of Toda [13], but proofs may be given which are based on the results of James [3], Kervaire [6] and Paechter [12].

Lemma 2.1. For $n \equiv 0 \bmod 4, n \geqq 4$, there exists $\tau_{n-1} \in \pi_{2 n-1}\left(S^{n-1}\right)$ such that $E \tau_{n-1}=\left[\eta_{n}, \iota_{n}\right]$ and $H\left(\tau_{n-1}\right)=\eta_{2 n-3}^{2}$.

Remark. This is obtained from Proposition 11.10, i) of [13] for $\alpha=\eta_{2 n-4}$. According to [13], [10] we may take $\tau_{3}=\nu^{\prime} \eta_{8}, \tau_{7}=\sigma^{\prime} \eta_{14}, \tau_{11}=\theta^{\prime}$, $\tau_{15} \equiv \eta^{* \prime} \bmod E \pi_{30}\left(S^{14}\right)$ and $\tau_{19}=\bar{\beta}$.

Proof. Introduce the diagram

in which row and columns are exact and the diagram commutes up to sign by James [3]. The values of homotopy groups of Stiefel manifolds are taken from Paechter [12]. We see that j is bijective, hence we may find $t \in \pi_{n+1}\left(R_{n+1}, R_{n-1}\right)$ with $\partial_{2} t=\eta_{n-2}^{2}$. Since $H_{3} E^{2} J \partial_{1} t=0$, there is a $t^{\prime} \in \pi_{2 n-2}\left(S^{n-2}\right)$ with $E^{3} t^{\prime}=E^{2} J \partial_{1} t$. Since $E: \pi_{2 n-1}\left(S^{n-1}\right) \rightarrow \pi_{2 n}\left(S^{n}\right)$ is monic by $\left[\eta_{n-1}^{2}, \iota_{n-1}\right]=0$, it follows that $\tau_{n-1}=J \partial_{1} t-E t^{\prime}$ is what we wanted.

We now see from the well known information of vector fields on spheres that, if we write $n+1=m \cdot 2^{c} \cdot 16^{d}$ where m is odd $\geqq 3$ and $0 \leqq c \leqq 3$ then there exists $\tau_{n-\rho+1}^{(\rho-1)} \in \pi_{2 n-\rho}\left(S^{n-\rho+1}\right), \rho=2^{c}+8 d$, such that $\left[\iota_{n}, \iota_{n}\right]=E^{\rho-1} \tau_{n-\rho+1}^{(\rho-1)}$ and $H\left(\tau_{n-\rho+1}^{(\rho-1)}\right) \neq 0$ in $\pi_{2 n-\rho}\left(S^{2 n-2 \rho+1}\right)$. Special cases of this fact are needed in the sequel.

Consider the bundles $U_{n+1} \rightarrow S^{2 n+1}$ and $S p_{n+1} \rightarrow S^{4 n+3}$ with characteristic classes $\gamma_{2 n}^{\prime} \in \pi_{2 n}\left(U_{n}\right), \gamma_{4 n+2}^{\prime \prime} \in \pi_{4 n+2}\left(S p_{n}\right)$. In the light of the results of Ôguchi [11] and James-Whitehead [5] we may take for $\tau_{2 n}^{(1)} \in \pi_{4 n}\left(S^{2 n}\right)$ and $\tau_{4 n}^{(3)} \in \pi_{8 n+2}\left(S^{4 n}\right)$ (n : even) the images under Hopf-Whitehead homomorphisms.

Lemma 2.2. For n even, $\tau_{2 n}^{(1)}$ is of order 2 and $E \tau_{2 n}^{(1)}=\left[\iota_{2 n+1}, \iota_{2 n+1}\right]$, $H\left(\tau_{2 n}^{(1)}\right)=\eta_{4 n-1}$.

Remark. This lemma is related to Proposition 11.10, ii) of [13] with $\alpha=\epsilon_{4 n-2}$. According to [13, 10], we may take $\tau_{4}^{(1)}=\nu_{4} \eta_{7}, \tau_{8}^{(1)}=\sigma_{8} \eta_{15}$ $+\bar{\nu}_{8}+\varepsilon_{8}, \tau_{12}^{(1)}=\theta, \tau_{16}^{(1)} \equiv \eta_{16}^{*}+\omega_{16} \bmod \sigma_{16} \mu_{23}, \tau_{20}^{(1)}=\overline{\bar{\beta}} . \quad$ Note that $\pi_{2 n}\left(R_{2 n}\right)=\left(Z_{2}\right)^{3}$ or $\left(Z_{2}\right)^{2}$ by [6].

Lemma 2.3. For n even, $E^{3} \tau_{4 n}^{(3)}=\left[{ }_{\iota_{4 n+3}}, c_{4 n+3}\right]$ and $H\left(\tau_{4 n}^{(3)}\right)=r \nu_{8 n-1}$, where $r= \pm 1, \pm 3$.

Remark. According to [13], [9] we may take $\tau_{8}^{(3)}=\sigma_{8} \nu_{15}, \tau_{16}^{(3)}=\nu_{16}^{*}$ $+\xi_{16},\left[\left[_{23}, \iota_{23}\right]=E^{3} \sigma_{20}^{*}\right.$.

Lemma 2.4. For $n \equiv 0 \bmod 4, n \geqq 4, \pi_{2 n+3}\left(U_{n-1}\right) \cong \pi_{2 n+3}\left(U_{n}\right), \pi_{2 n+3}\left(U_{n}\right)$ is cyclic with generator $\gamma_{2 n}^{\prime} \nu_{2 n}$ and $\pi_{2 n+3}\left(U_{n-1}\right)$ is generated by $u_{2 n+3}^{n-1}$ whose image under the J-homomorphism is denoted by $\bar{\tau}_{2 n-2} \in \pi_{4 n+1}\left(S^{2 n-2}\right)$. Then $E^{3} \bar{\tau}_{2 n-2}=\left[\nu_{2 n+1}, \iota_{2 n+1}\right]$ and $H\left(\bar{\tau}_{2 n-2}\right)=\nu_{4 n-5}^{2}$.

3. Proof of Theorem.

Proposition 3.1. Suppose that $\beta \in \pi_{q}\left(S^{4 k+1}\right)$ satisfies $\eta_{8 k-3}^{2}\left(E^{4 k-2} \beta\right)$ $\neq 0$, where $q \leqq 8 k-4$. If $E^{2}: \pi_{q+4 k-3}\left(S^{q-2}\right) \rightarrow \pi_{q+4 k-1}\left(S^{q}\right)$ is epic (e.g., $q \geqq 4 k+2)$, then $\left[\eta_{4 k} \beta, c_{4 k}\right] \notin \eta_{4 k} \beta \pi_{q+4 k-1}\left(S^{q}\right)$.

Proof. We may write $\beta=E^{2} \beta^{\prime}$. By Lemma 2.1, $\left[\eta_{4 k} \beta, c_{4 k}\right]$ $=\left[\eta_{4 k}, \ell_{4 k}\right] E^{4 k-1} \beta=E\left(\tau_{4 k-1} E^{4 k-2} \beta\right)$. Assume that $E\left(\tau_{4 k-1} E^{4 k-2} \beta\right)$ $=E\left(\eta_{4 k-1} E\left(\beta^{\prime} \alpha\right)\right)$. Then, since the kernel of $E: \pi_{q+4 k-2}\left(S^{4 k-1}\right) \rightarrow \pi_{q+4 k-1}\left(S^{4 k}\right)$ coincides with $\left[\pi_{q}\left(S^{4 k-1}\right), \iota_{4 k-1}\right]$, we have

$$
\tau_{4 k-1} E^{4 k-2} \beta=\eta_{4 k-1} E\left(\beta^{\prime} \alpha\right)+\left[\epsilon_{4 k-1}, \ell_{4 k-1}\right] E^{4 k-2} \gamma, \gamma \in \pi_{q}\left(S^{4 k-1}\right)
$$

By taking the Hopf invariant of both sides, we have a contradiction $\eta_{8 k-3}^{2}\left(E^{4 k-2} \beta\right)=0$.

Proposition 3.2. Suppose that $\theta \in \pi_{q}\left(S^{4 k+1}\right)$ satisfies $\eta_{8 k-1} E^{4 k-1} \theta$ $\notin 2 \pi_{q+4 k-1}\left(S^{8 k-1}\right)$ (e.g. $\eta_{8 k-1} E^{4 k-1} \theta \neq 0$ and the order of each element of $\pi_{q+4 k-1}\left(S^{8 k-1}\right)$ equals 2 or is prime to that of θ), where $q \leqq 8 k-2$. If $E^{2}: \pi_{q+4 k-2}\left(S^{q-2}\right) \rightarrow \pi_{q+4 k}\left(S^{q}\right)$ is epic (e.g. $q \geqq 4 k+3$), then $\left[\theta, \iota_{4 k+1}\right]$ $\notin \theta \pi_{q+4 k}\left(S^{q}\right)$.

Proof. Assume that $\left[\theta, \iota_{4 k+1}\right]=\theta E^{2} \alpha, \alpha \in \pi_{q+4 k-2}\left(S^{q-2}\right)$. Since $\left[\theta, \iota_{4 k+1}\right]$ $=\left[{ }_{4 k+1}, \iota_{4 k+1}\right] E^{4 k} \theta=E\left(\tau_{4 k}^{(1)} E^{4 k-1} \theta\right)$ by Lemma 2.2 and since the kernel of $E: \pi_{q+4 k-1}\left(S^{4 k}\right) \rightarrow \pi_{q+4 k}\left(S^{4 k+1}\right)$ is generated by $\left[\pi_{q}\left(S^{4 k}\right), \varepsilon_{4 k}\right]$, we have, for $\bar{\theta}$ with $E^{2} \bar{\theta}=\theta$,

$$
\tau_{4 k}^{(1)} E^{4 k-1} \theta=E(\bar{\theta} \alpha)+\left[{ }_{4 k}, \iota_{4 k}\right] E \gamma, \quad \gamma \in \pi_{q+4 k-2}\left(S^{8 k-2}\right)
$$

Taking the Hopf invariant of both sides yields $\eta_{8 k-1} E^{4 k-1} \theta \in 2 \pi_{q+4 k-1}\left(S^{8 k-1}\right)$, which contradicts our assumption.

Proposition 3.3. Suppose $E \theta \in \pi_{q}\left(S^{n}\right)$ satisfies $2 E^{n-1} \theta \neq 0$, where n is even and $q \geqq n+1$. Then $\left[E \theta, \iota_{n}\right] \notin(E \theta)_{*} \pi_{n+q-1}\left(S^{q}\right)$.

Proof. Assume $\left[E \theta, \iota_{n}\right]=(E \theta) \alpha$; then $\alpha=E \alpha^{\prime}$ for some α^{\prime} $\in \pi_{n+q-2}\left(S^{q-1}\right)$. Taking the Hopf invariant, we get $2 E^{n-1} \theta=0$.

Proposition 3.4. Let $n \equiv 2 \bmod 4, n \geqq 6$. Then $\left[\nu_{n}^{2}, \iota_{n}\right] \notin \nu_{n}^{2} \pi_{2 n+5}\left(S^{n+6}\right)$.
Proof. By Proposition 11.11, ii) of Toda [13], there is a $\tilde{\nu}_{n}$ $\in \pi_{2 n+3}\left(S^{n-2}\right)$ such that $\left[\nu_{n}^{2}, \iota_{n}\right]=E^{2} \tilde{\nu}_{n}$ and $H\left(\tilde{\nu}_{n}\right) \equiv \varepsilon_{2 n-反}$. Assume that $\left[\nu_{n}^{2}, \iota_{n}\right]=\nu_{n}^{2} E^{2} \alpha$, which implies that there is an integer x such that $E \tilde{\nu}_{n}$ $=E\left(\nu_{n-2}^{2} E \alpha\right)+x\left[\sigma_{n-1}, \iota_{n-1}\right]=E\left(\nu_{n-2}^{2} E \alpha\right)+x\left(E \tau_{n-2}^{(1)}\right) \sigma_{2 n-3}$ by Lemma 2.2. It follows that

$$
\tilde{\nu}_{n}=\nu_{n-2}^{2} E \alpha+x \tau_{n-2}^{(1)} \sigma_{2 n-4}+y\left[\bar{\nu}_{n-2}, \iota_{n-2}\right]+z\left[\varepsilon_{n-2}, \iota_{n-2}\right]
$$

for some integers y and z. This leads to a contradiction $\varepsilon_{2 n-5}$ $\equiv x \eta_{2 n-8} \sigma_{2 n-4}=x\left(\bar{\nu}_{2 n-5}+\varepsilon_{2 n-5}\right) \eta_{2 n-5} \sigma_{2 n-4}$ for $n \geqq 10$.

We now proceed to prove the theorem. Take $\beta=\iota_{4 k+1}(k \geqq 3)$ in Proposition 3.1. Since any element of $\pi_{8 k-1}\left(S^{4 k}\right)$ is expressible as $E \gamma$ $+x\left[\epsilon_{4 k}, \ell_{4 k}\right]$, we see that $E^{2}: \pi_{8 k-2}\left(S^{4 k-1}\right) \rightarrow \pi_{8 k}\left(S^{4 k+1}\right)$ is epic. Thus the assertion for $\left[\eta_{4 k}, \varepsilon_{4 k}\right](k>2)$ follows. The case $k=2$ follows from the fact that $\left[\eta_{8}, \ell_{8}\right]=\left(E \sigma^{\prime}\right) \eta_{15}$ and $\eta_{8} \sigma_{9}=\left(E \sigma^{\prime}\right) \eta_{15}+\bar{\nu}_{8}+\varepsilon_{8}$. Applying Proposition 3.1 to $\beta=\eta_{4 k+1}(k \geqq 2), \sigma_{4 k+1}(k \geqq 3), \mu_{4 k+1}(k \geqq 3), \rho_{4 k+1}(k \geqq 5), \eta_{4 k+1}^{*}(k \geqq 6)$,
$\bar{\mu}_{4 k+1} \quad(k \geqq 6) \quad$ and observing relations $\quad \eta_{8 k-3}^{3}=4 \nu_{8 k-3}, \quad \eta_{8 k-3}^{2} \sigma_{8 k-1}$ $=\nu_{8 k-3}^{3}+\eta_{8 k-3} \varepsilon_{8 k-2}, \quad \eta_{8 k-3}^{2} \mu_{8 k-1}=4 \zeta_{8 k-3}, \quad \eta_{8 k-3}^{2} \rho_{8 k-1}=\sigma_{8 k-3} \eta_{8 k+4} \mu_{8 k+5}, \quad \eta_{8 k-3}^{2} \eta_{8 k-1}^{*}$ $=4 \nu_{8 k-3}^{*}, \eta_{8 k-3}^{2} \mu_{8 k-1}=4 \bar{\zeta}_{8 k-3}$, the cases involving $\eta_{4 k}$ are settled.

We may apply Proposition 3.2 by taking for $\theta \eta_{4 k+1}(k \geqq 1), \sigma_{4 k+1}$ $(k \geqq 3), \eta_{4 k+1} \sigma_{4 k+2}(k \geqq 3), \bar{\nu}_{4 k+1}(k \geqq 3), \varepsilon_{4 k+1}(k \geqq 3), \mu_{4 k+1}(k \geqq 3), \kappa_{4 k+1}(k \geqq 5)$, $\mu_{4 k+1}(k \geqq 5), \rho_{4 k+1}(k \geqq 5), \eta_{4 k+1} \rho_{4 k+2}(k \geqq 5), \omega_{4 k+1}(k \geqq 5), \kappa_{4 k+1}(k \geqq 6)$. Here we note that $\eta_{8 k-1} \kappa_{8 k}=\bar{\varepsilon}_{8 k-1} \notin 2 \pi_{8 k+14}\left(S^{8 k-1}\right)=\left\{2 \rho_{8 k-1}\right\}+Z_{15}, \quad \eta_{8 k-1} \rho_{8 k}$ $=\sigma_{8 k-1} \mu_{8 k+6}, \eta_{8 k-1} \mu_{8 k} \notin 2 \pi_{8 k+17}\left(S^{8 k-1}\right)=\left\{2 \nu_{8 k-1}^{*}\right\}$.

We shall show that $\left[\nu_{8 k+1}, \iota_{8 k+1}\right] \notin \nu_{8 k+1} \pi_{16 k+4}\left(S^{8 k+4}\right), k \geqq 1$. Assume $\left[\nu_{8 k+1}, \iota_{8 k+1}\right]=\nu_{8 k+1} \alpha$. Since $\left[\iota_{8 k}, \iota_{8 k}\right]$ is of infinite order, we may write $\alpha=E^{4} \alpha^{\prime}, \quad \alpha^{\prime} \in \pi_{18 k}\left(S^{8 k}\right)$. By Lemma 2.4, $E^{3} \bar{\tau}_{8 k-2}=E^{3}\left(\nu_{8 k-2} E \alpha^{\prime}\right)$, and $\pi_{18 k+5}\left(S^{16 k+1}\right)=\pi_{18 k+4}\left(S^{18 k-1}\right)=0$ gives

$$
\pi_{18 k+1}\left(S^{8 k-2}\right) \xrightarrow{E} \pi_{18 k+2}\left(S^{8 k-1}\right) \stackrel{E}{\longrightarrow} \pi_{18 k+3}\left(S^{8 k}\right) \stackrel{E}{\longrightarrow} \pi_{18 k+4}\left(S^{8 k+1}\right),
$$

in which the kernel of the first E is generated by $\left[\nu_{8 k-2}^{2}, \ell_{8 k-2}\right]$, so that we get $\bar{\tau}_{8 k-2}=\nu_{8 k-2} E \alpha^{\prime}+x\left[\nu_{8 k-2}^{2}, \iota_{8 k-2}\right]$. This is a contradiction, because the Hopf invariant of the right hand side is 0 .

Next we show that $\left[\nu_{8 k+3}, \iota_{8 k+3}\right] \notin \nu_{8 k+3} \pi_{18 k+8}\left(S^{8 k+6}\right), k \geqq 1$. Assume that $\left[\nu_{8 k+3}, \iota_{8 k+3}\right]=\nu_{8 k+3} \alpha$. Since $\pi_{18 k+5}\left(S^{8 k+3}\right)$ is finite, $E: \pi_{18 k+4}\left(S^{8 k+2}\right)$ $\rightarrow \pi_{18 k+5}\left(S^{8 k+3}\right)$ is epic, hence $\alpha=E^{4} \alpha^{\prime}$. By Lemma 2.3, we have $E^{3}\left(\tau_{8 k}^{(3)} \nu_{16 k+2}\right)=E^{3}\left(\nu_{8 k} E \alpha^{\prime}\right)$. Since $\pi_{18 k+9}\left(S^{16 k+反}\right)=\pi_{18 k+8}\left(S^{8 k+3}\right)=0$, it follows that $\tau_{8 k}^{(2)} \nu_{18 k+2}=\nu_{8 k} E \alpha^{\prime}+x\left[\nu_{8 k}^{2}, \ell_{8 k}\right]$. By taking the Hopf invariant, a contradiction arises.

Finally we show that, for $n \equiv 2 \bmod 4, n \geqq 10,\left[8 \sigma_{n}, \iota_{n}\right] \notin 8 \sigma_{n} \pi_{2 n+6}\left(S^{n+7}\right)$, which completes the proof of the theorem. By Proposition 11.11, (ii) of Toda [13] there exists $\beta \in \pi_{2 n+4}\left(S^{n-2}\right)$ such that $\left[8 \sigma_{n}, \iota_{n}\right]=E^{2} \beta, H(\beta)$ $\in\left\{\eta_{2 n-5}, 2 \iota_{2 n-4}, 8 \sigma_{2 n-4}\right\}$, i.e., $H(\beta) \equiv \mu_{2 n-5} \bmod \eta_{2 n-5} \pi_{2 n+4}\left(S^{2 n-4}\right)$. Assume that $\left[8 \sigma_{n}, \iota_{n}\right]=E^{2}\left(8 \sigma_{n-2} E \alpha\right), \alpha \in \pi_{2 n+3}\left(S^{n+4}\right)$. Then

$$
E \beta \equiv E\left(8 \sigma_{n-2} E \alpha\right) \bmod \left\{\left[\nu_{n-1}, \iota_{n-1}\right],\left[\varepsilon_{n-1}, \iota_{n-1}\right]\right\}
$$

Since the indeterminacy is equal to $\left\{\left(E \tau_{n-2}^{(1)}\right) \bar{\nu}_{2 n-3},\left(E \tau_{n-2}^{(1)}\right) \varepsilon_{2 n-3}\right\}$ by Lemma 2.2, we get

$$
\beta \equiv 8 \sigma_{n-2} E \alpha \bmod \left\{\tau_{n-2}^{(1)} E \pi_{2 n+3}\left(S^{2 n-5}\right),\left[\iota_{n-2}, \iota_{n-2}\right] \pi_{2 n+3}\left(S^{2 n-5}\right)\right\},
$$

which leads to a contradiction in taking the Hopf invariant (Note that, for $\left.n=10 \pi_{24}\left(S^{15}\right)=\left(Z_{2}\right)^{3}\right)$.

Added in proof. Using Proposition 11.10, i) of [13] we can show that, for $E^{2} \alpha \in \pi_{q}\left(S^{n}\right)$ of order 2 with $\eta_{2 n-3}\left(E^{n-1} \alpha\right) \neq 0$, where $n \equiv 0 \bmod 4$, $n+2 \leqq q \leqq 2 n-5$, we have $\left[E^{2} \alpha, \iota_{n}\right] \notin\left(E^{2} \alpha\right) \pi_{n+q-1}\left(S^{q}\right)$. This may be applied to $\varepsilon_{n}(n \geqq 16), \bar{\nu}_{n}(n \geqq 16), \mu_{n}(n \geqq 16), \kappa_{n}(n \geqq 20)$ and $\mu_{n}(n \geqq 24)$.

References

[1] P. J. Hilton: A note on the P-homomorphism in homotopy groups of spheres. Proc. Cambridge Phil. Soc., 51, 230-233 (1955).
[2] W. C. Hsiang, J. Levine, and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in Euclidean space. Topology, 3, 173-181 (1965).
[3] I. M. James: On the iterated suspension. Quart. J. Math., 5, 1-10 (1954).
[4] -: Note on cup-products. Proc. Amer. Math. Soc., 8, 374-383 (1957).
[5] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres. I. Proc. London Math. Soc., 4, 196-218 (1954).
[6] M. A. Kervaire: Some nonstable homotopy groups of Lie groups. Illinois J. Math., 4, 161-169 (1960).
[7] L. Kristensen and I. Madsen: Note on Whitehead products in spheres. Math. Scand., 21, 301-314 (1967).
[8] M. Mahowald: Some Whitehead products in (S^{n}). Topology, 4, 17-26 (1965).
[9] M. Mimura: On the generalized Hopf homomorphism and the higher composition, Part II. $\pi_{n+i}\left(S^{n}\right)$ for $i=21$ and 22. J. Math. Kyoto Univ., 4, 301326 (1965).
[10] M. Mimura and H. Toda: The $(n+20)$-th homotopy groups of n-spheres. J. Math. Kyoto Univ., 3, 37-58 (1963).
[11] K. Ôguchi: A generalization of secondary composition and its application. J. Fac. Sci., Univ. of Tokyo, Sec. I., 10, 29-79 (1963).
[12] G. F. Paechter: The groups $\pi_{r}\left(V_{n, m}\right)$. I. Quart. J. Math., 7, 249-268 (1956).
[13] H. Toda: Composition Methods in Homotopy Groups of Spheres. Princeton (1962).

