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8. Paracompacmess of Topological Completions

By Tadashi ISHII
Shizuoka University

(Comm. by Kenjiro SHODA, M. l. A., Jan. 12, 1974)

1o Introduction. All spaces are assumed to be completely regular

T unless otherwise specified. This paper is mainly concerned with
paracompactness of the completion/(X) of a space X with respect to
its finest uniformity /. Such completion of a space X is called the
topological completion of X (or the completion in the sense of
Dieudonn). Following Morita [12], a space X is said to be pseudo-
paracompact (resp. pseudo-LindelSf etc.) if/(X) is paracompact (resp.
LindelSf etc.). Since for any M-space X/(X) is a paracompact M-
space ([12]), every M-space is pseudo-paracompact.

The purpose of this paper is to study some properties of pseudo-
paracompact spaces. The details will be published elsewhere.

2. Characterizations of pseudo.paracompact spaces. An open
covering (C)={O} of a space X is said to be extendable to/(X) if there
exists an open covering (C)-{0} of/(X) such that O--OX for each
r. We note that every normal open covering of X is extendable to
/(X) as a normal open covering (cf. [9, (I) Lemma 8 and (II) Lemma
1]).

Now let {1I1 e A} be the set of all the normal open coverings of a
space X. A filter --{F} in X is said to be weakly Cauchy with
respect to the uniformity / if for any 2 e A there exists U e 1 such
that UF4= for every a. In other words, a filter is weakly
Cauchy if for any e A there exists a stronger filter than such
that Lc U for some U e 1 and L e . We state first the necessary
and sufficient conditions for a space X to be pseudo-paracompact, some
of which are the modifications of Corson’s theorem [1] for the
characterizations of paracompact spaces.

Theorem 2.1. For a space X, the following conditions are
equivalent.

(a) X is pseudo-paracompact.
(b) Every open covering of X which is extendable to I(X) is a

normal covering.
(c) The product of X with every compact space is pseudo-normal.
(d) Every weakly Cauchy filter in X with respect to l is contained

in some Cauchy filter with respect to/.
(e) If is a filter in X such that the image of has a cluster
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point in any metric space into which X is continuously mapped, then
is contained in some Cauchy filter with respect to/.
The equivalence of (a) and (d) was essentially proved by tIowes [4].
The ollowing example shows that there exists a space which is

strongly normal (that is, countably paracompact and collectionwise
normal) but not pseudo-paracompact.

Ixample 2.2. Let X be a subspace o the product l-I.e R. which
consists of those points which have at most a countable number of
non-zero coordinates, where A is uncountable index set and R. is the
real line or each a e A. In [2], Corson proved that (a) X is strongly
normal and that (b) (X)= I-[.e R., where (X) denotes the realcom-
pactificatio of a space X. But we can prove that/(X)=o(X). Hence
X is not even pseudo-normal, since ]-I .e R. is not normal ([14]).

:3, Some results related to pseudo.paracompactness. We shall
state first the sum theorems of pseudo-paracompact spaces, with which
the ollowing two theorems are concerned.

Theorem 3.1. If there exists a normal open covering 1I={U.} of
X such that each subspace U. is pseudo-paracompact, then X is pseudo-
paracompact.

Theorem 3.2. Let {F.Ic e 12} be a locally finite closed covering

of X such that each subspace F. is pseudo-paracompact. If X is
strongly normal, then X is pseudo-paracompact.

We don’t know whether Theorem 3.2 is valid or not in case X is
not strongly normal.

Now let f:XY be a continuous map. Then there exists its ex-
tension/(f) (X)--.(Y), where/3(S) denotes the Stone-Cech compactifi-
cation of a space S, and it is known that/(f) carries t(X) into z(Y)
([12]). We denote this map by /(f). A continuous map f from a
space X onto a space Y is called a WZ-map (Ishiwata [6]), a Z-map
and a quasi-perfect (resp. perfect) map if it satisfies (1), (2) and (3)
below respectively"

(1) fl(f)-(y)=cl(r) f-(y) or any y e Y.
(2) f(Z) is closed in Y for each zero-set Z of X.
(3) f is a closed map such that f-(y) is countably compact (resp.

compact) for each y e Y.
Every closed map is a Z-map, and every Z-map is a WZ-map ([6]).
The following theorem is concerned with a relation between f

and/(f), and it is useful to show that the preimages of paracompact
spaces under quasi-perfect maps are pseudo-paracompact.

Theorem 3.3. If f is a quasi-perfect map from a space X onto
a topologically complete space Y, then/2(f) :/(X)Y is perfect. More
generally, if f is a WZ-map from a space X onto a topologically com-
plete space Y such that f-(y) is relatively pseudo-compact (that is,



No. 1] Paracompactness of Topological Completions 35

every real-valued continuous function on X is bounded on f-l(y)) for
each y e Y, then/(f) g(X)-Y is perfect.

Corollary 3.4. If f is a quasi-perfect map from a space X onto a
paracompact space Y, then X is pseudo-paracompact. More generally,

if f is a WZ-map from a space X onto a paracompact space Y such
that f-l(y) is relatively pseudo-compact for each y e Y, then X is
pseudo-paracompact.

In case the fibers {f-(y)} are not necessarily relatively pseudo-
compact, we have the following theorem.

Theorem 3.5. If there exists a Z-map f from a space X onto a
paracompact q-space Y (in the sense of Michael [8]) such that f-(y) is
pseudo-paracompact for each y e Y, then X is pseudo-paracompact.

We note here that if f is a Z-map rom a space X onto a q-space
Y, then f-(y) (=the boundary of f-(y)) is relatively pseudo-compact
for each y e Y. This is a slight modification o [8, Theorem 2.1].
Hence, to prove Theorem 3.5, it is sufficient to prove the following
theorem.

Theorem 3.6. If there exists a Z-map f from a space X onto a
paracompact space Y such that ff-(y) is relatively pseudo-compact
and f-(y) is pseudo-paracompact for each y e Y, then X is pseudo-
paracompact.

This theorem can be deduced from the following lemma.
Lemma 3.7. If there exists a Z-map f from a space X onto a

paracompact space Y such that f-l(y) is relatively pseudo-compact
and that, for any open covering (C) of X which is extendable to I(X),
f-(y) (C) is a normal covering of the subspace f-(y) for each y e Y,
then X is pseudo-paracompact.

As a direct consequence of Theorem 3.5, we have the ollowing
corollary.

Corollary 3.8. Let f be a closed (or Z-) map from a space X onto
a metric space Y. Then X is pseudo-paracompact in the following
cases.

(a) f-(y) is an M-space for each y Y.
(b) f-(y) is paracompact for each y e Y.
In Theorem 3.5, we can not exclude the assumption that Y is a q-

space. This is shown by making use of the quotient map f from the
space//onto the quotient space II/D (cf. [3, 6Q]), since f is a closed
map and f-(y) is a metric space or each y e II/D. Moreover in
Theorem 3.5 we can not replace ’Z-map’ by ’open map’. To see this,
let X be a metric space and Y a paracompact space such that the
product X Y is not normal ([7]), and let " X Y-X be the projec-
tion map. Then p is an open map from X Y onto a metric space X
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such that -(x) is paracompact for each x e X. But X Y is not even
pseudo-normal, since X Y is topologically complete.

Concerning Corollary 3.8, we note that if X is the preimage of a
metric space Y under a closed map f such that f-(y)is an M-space
(resp. paracompact), then X is not necessarily an M-space (resp. para-
compact). Hoshina proved the validity of the paracompact case by
making use of the quotient map :-/D (cf. [3, 5I]). But this
example shows that the case for M-spaces is also valid.

The problem whether the images (or preimages) of pseudo-para-
compact spaces under perfect maps are also pseudo-paracompact or
not is unsolved, but we can prove the following theorem.

Theorem 3.9. Let f: X--Y be a quasi-perfect map. If X is
strongly normal and pseudo-paracompact, then so is Y.

We note that Theorem 3.2 is easily deduced from this theorem.
The following theorem is concerned with the necessary and suffi-

cient conditions for a space X in order that /(X) be locally compact
and paracompact.

Theorem 3.10. For a space X, the following conditions are
equivalent.

(a) X is pseudo-locally-compact and pseudo-paracompact.
(b) There exists a normal open covering 1I={U} such that each

U is relatively pseudo-compact in X.
(c) There exists a normal sequence {1I} of open coverings of X

such that for each x e X St(x, 1I()) is relatively pseudo-compact in X
for some k(x).

(d) There exists a Z-map f from X onto a locally compact metric
space T such that f-(y) is relatively pseudo-compact for each y e T.

(e) There exists a Z-map f from X onto a locally compact and
paracompac space Y such tha f-(y) is relatively pseudo-compact for
each y e Y.

(f) There exists a WZ-map f from X onto a locally compact and
paracompact space such that f-(y) is relatively pseudo-compact for
each y e Y.

The equivalence of (a) and (b) is due to Morita [13], who proved
also the equivalence of (a) and (d) independently.

4. Pseudo.LindelSf property. For a space X we denote by u the
uniformity of X which consists of all the countable normal open cover-
ings of X. As for the characterizations of pseudo-LindelSf spaces, we
have the following theorem.

Theorem 4.1. For a space X, the following conditions are
equivalent.

(a) X is pseudo-Lindel6f.
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(b) X is pseudo-paracompact and any normal open covering of X
has a countable subcovering.

(c) Every open covering of X which is extendable to /2(X) has a
countable subcovering.

(d) Every weakly Cauchy filter in X with respect to is contained
in some Cauchy filter with respect to/2.

(e) If is a filter in X such that the image of has a cluster
point in any separable metric space into which X is continuously
mapped, then is contained in some Cauchy filter with respect to/2.

The equivalence of (a) and (b) was proved by Howes [4].
As is easily seen from (c) in Theorem 4.1, the image of a pseudo-

LindelSf space under a continuous map is pseudo-LindelSf. This result
was first pointed out by K. Morita. Therefore it follows that if a
space X is the countable union of the pseudo-LindelSf subspaces then
X is also pseudo-LindelSf.

Corresponding to Theorem 3.5, we can prove the following
theorem.

Theorem 4.2. If there exists a Z-map f from a space X onto a

Lindel6f space Y such that f-l(y) is pseudo-Lindel6f for each y e Y,
then X is pseudo-Lindel6f.

To prove this theorem, we make use of the following lemma.
Lemma 4.3. If there exists a Z-map f from a space X onto a

Lindel6f space Y such that, for any open covering (C) of X which is
extendable to /2(X), f-(y)(C) has a countable subcovering for each
y e Y, then X is pseudo-Lindel6f.
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