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2 Eigenfunction Expansions for Symmetric Systems
of First Order in the Half.Space R

By Seiichiro WAKABAYASHI
Faculty of Science, Tokyo University of Education

(Comm. by Kbsaku YOSIDA, M. d. A., Jan. 12, 1974)

1o Introduction. Eigenfunction expansion theory by distorted
plane waves was initiated by T. Ikebe [1] and has been investigated by
many authors, ior example, Y. Shizuta [9], N.A. Shenk II [8], K.
Mochizuki [6], J.R. Schulenberger and C. H. Wilcox [7] and others.
T. Ikebe treated the SchrSdinger operator -zl+q(x) in the whole 3-
dimensional Euclidean space R3. Y. Shizuta treated -z/in an exterior
domain of R and N. A. Shenk II generalized the result to the higher
dimensional case (see also T. Ikebe [2]). K. Mochizuki treated sym-
metric systems in an exterior domain of Rn and J. R. Schulenberger
and C. H. Wilcox in the whole space R. An other approach to spectral
representations for the operators associated with the wave equation
and symmetric hyperbolic systems in an exterior domain of R is
developed by P. D. Lax and R. S. Phillips [3]. In this note we con-
sider stationary problems for symmetric hyperbolic systems with
constant coefficients in the half-space R and give an expansion theorem
by the improper eigenfunctions for such a problem. We note that
this problem cannot be regarded as a perturbation of the whole space
problem. In fact, our theory is a generalization of the sine and cosine
transformations in the L space on the positive half-line which are

deigenfunction expansions for with Dirichlet or Neumann condi-
dx

tions.
The author would like to express his hearty thanks to Professor

M. Matsumura for many valuable suggestions and helpful discussions.
2. Assumptions. We denote the n-dimensional Euclidean space

by R and its point by x=(x, ..., x). We also denote a point in R
by x’-----(x, ., x_) and the set {x e R x 0} by R.. Let L be a first
order symmetric hyperbolic operator with constant coefficients:

(1) L=I 3___A 0
t = "-’where I is the identity matrix o order N and the A are N N constant

Hermitian matrices. We consider the mixed initial and boundary value
problem in R for L"
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L[u(t, x)] f(t, x), t 0, x e R,
( 2 u(O, x)=Uo(X), x e R,

Bu(t, x)Io O, t O,
where u(t, x), f(t, x) and Uo(X) are vector-valued functions whose values
lie in the N-dimensional complex space C and B is an N constant
matrix with rank 1. Replacing u(t, x) and f(t, x) in (2) by etv(x) and

respectively, we obtain the corresponding stationary

( 3
(A--aI)v(x) g(x), x e R.,

Bv(x)]=o--O,
where

Put

( 5 ) A(r]) , ]jAj,
j=l

(6) M(;2)=A 2I-- A
j--1

where we assume thatA is non-singularand, (1NN, 1N N-1)
are real parameters and 2 is a complex parameter. Put
( 7 ) P(2, )= det (2I--A())- det (--A) det (rI--M( 2)),
where -(, ..., ) (, ..., _, r). Let
( 8 ) P(2, )- Q(2, ),... Qq(2,)
be the factorization of the homogeneous polynomial P(2, ) in (2, ) into
powers of distinct factors Q(2, ) which are irreducible over C. P(2, )
is monic as a polynomial in 2. Thus Q(2, ) may be uniquely defined,
apart rom their order, by requiring that they also be monic in 2 and
Q(2, ) are homogeneous. Put
( 9 ) Q(, ) Q(, v)... Q(, ).

Definition 1. The operator L is called uniformly propagative if
the roots 2(), lg]gZ, of Q(2,)-0 satisfy the following conditions"

(i) 2(), lgjgZ, are distinct or ll= 1.
(ii) 2()=0 or any e R if there exists some with ]1--1 such

that 2()-- 0.
Here Z denotes the degree o Q(2,) with respect to 2 and/./the
Euclidean norm (see, [4] and [10]).

Let E+(; 2) be the subspace of C spanned by the root vectors
corresponding to the characteristic roots of the matrix M(; 2) with
positive imaginary part.

Now we state precisely the assumptions that we impose on L and
B"

(L.1) The operator L is uniforml.y propagative.



8 S. WAKABAYASHI [Vo]. 50,

(L.2) The operator A is elliptic, i.e., P(0, z]):/:0 for any zieR
with I/1= 1.

(L.3) For any real 2 :/: 0 and any e R- the real roots of Q(2,
--0 with respect to r are at most double and the number of the real
double roots for arbitrarily fixed (2, ):/: (0, 0) is at most one.

(B.1) The boundary matrix B is minimally conservative, i.e.,
A.--0 for any e ._= ker B C and if C is a subspace of C such
thatC_andA.-0 for any e ’, _=holds. Here x.y, x, y C,
denotes the real inner product.

(B.2) E/( k) f .={0} holds for any e R- and any real k with

Remark 2. The conditions (L.1) and (L.2) imply that the distinct
characteristic roots (V), 1<_]<_, of the matrix A(V) have constant
multiplicities and that/ is even. Thus we put /-2p and can label
{2()} in decreasing order"

(0) ()>(v)>’’" >(v)>0>/()>"" >.(),
+() --+(-v), -<]-<.

Moreover we see that N is even. Thus we put N:2m. The condition
(B.1) implies that l:m.

Remark 3. It follows from the condition (B.1) that the operator
Bf[=+o:A defined on D {f e CL(R/) 0} by (4) is essentially self-

adjoint in U(R)=_(L(R)). Here C(R) denotes the space of vector-
valued functions whose derivatives of order up to and including s
belong to U(R). We denote the self-adjoint extension of A by the
same latter.

Remark 4. The condition (L.2) implies that the matrices A,
1 <_ ]_< n, are non-singular.

3. Eigenfunctions. Let G(x,y; 2) be the Green function for
(A--2), IMP:/=0, constructed in [5]. We define projections P(),
l_]_2p, by

Ill (2I-A())-ld2, v :/:o,
(11) P()= 2i

[0, v-0,
where is chosen sufficiently small such that the set
contains no roots o Q(2, v)=0 except 2(/).

Definition 5. Let Im 2:/: 0, x e R and /e R. Define

(12) gZ(x, r]; 2)=[G(x, y; 2)](ri)(2(ri)-2)P(r]),
(13) g] (x, r])- gZ(x, ] 2(z]) _+ i0), l_]_2p.
Here we define G(x,y; 2)-0 or x e R and y e R and [f(y)](z])
denotes the conjugate Fourier transJorm of f(y) in q’ which consists
of the temperate distributions.

1) kerB denotes the subspace { e C; Be=0}.
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It follows from a representation formula of G(x, y; ) that )(x, )
are well-defined for every x e R. and almost every 2 e R" )(x, 2) are
(improper) eigenfunctions for the operator A, i.e., they satisfy
A (x, ])=2()r(x, r]) and B(x, )Io 0

4. Expansion theorem.
Theorem 6. Let the conditions (L.1)N(L.3) and (B.1), (B.2) be

For all f e Le(R) the following expansion formula holds"

(14) f(x)= .1 ,,r(x, )f?()d,
(15) f[()-R(x, )*f(x)dx.
Here the integrals (14) and (15) are taken in the sense of limit in the
mean.

(ii) feD(A)2 if and only if fjA(r]), j()f(r]) e P()L2(Rn)
--:{f() e L2(Rn) P()f()=f()}, l<]<2p. Then we have

()r2(x, )f?()d,(16) (Af)(x)

(17) (Af) (]) 2j(r])f? (r]).
From our proof of the above expansion theorem we can see that

a(A)--a(A)=R, where a(A) and a(A) denote the spectrum and the
absolutely continuous spectrum of A, respectively. Moreover we can
obtain the explicit representations of the eigenfunctions )(x, ). Let
’L2(R)-L(R) be the mappings defined by
(18) f=f? for allfeL2(R), l<]<2p.
Put

2p

(19) --j=lThen we can prove that and +- are isometries and give explicitly
the ranges of and +.

5. Outline of proof. The self-adjoint operator A admits a
uniquely determined spectral resolution"

(20) A--dE(),
where {E()}_<< denotes the right-continuous spectral family of A.
Then it follows from the Stieltjes inversion formula that or f e .q)(R))

and a4b

({ E(b)+E(b--O)2 E(a)+E(a--O)2 }f f) + --liml0
(21)

satisfied.
()

2) D(A) denotes the domain of the operator A.
3) _q)(t2) denotes the space of infinitely differentiable vector-valued functions

defined on t2 whose supports are compact subsets of /2.
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where (,)/ denotes the inner product of L2(R?) and

(22) f(] ;,)- F(x, ] ,D*f(x)dx, Im :/:0, 1 <]<2p.

In order o prove he expansion heorern i suffices o show ha we

can interchange he order of lim and [ d in (21). On he oher hand
0 Rn

we have that
j(x, 7 ") (2)-n/2e*x’Pj67)

(23) 4(2)-1/2----,[G(x, y’ + 0 )]()AnP(]).

Thus, the part most involved of our study is to analyse the behavior
around the singular points of the second term on the right hand side
of (23). But its description will be long enough, so that in a forth-
coming paper we shall give the more detailed exposition of the content
of this note and the proofs. We shall also give in it further results in
the case where both the conditions (L.2) and (B.2) are not assumed.
When the condition (B.2) is removed, new eigenfunctions correspond-
ing to boundary waves may arise in general.
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