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§ 1. Introduction and results. In this note we give a priori
estimates and existence theorems for the degenerate oblique derivative
problems, which will be formulated below. We first reduce the given
boundary value problems to the pseudo-differential equations on the
boundary with the aid of suitable boundary value problems which are
well studied, and next apply Melin’s theorem (see [5], Theorem 3.1) to
the pseudo-differential equations on the boundary.

Let 2 be a bounded domain in R”?, and we assume that QUoQ is a
C=-manifold with boundary. Let a(x), b(x) and c(x) be real-valued
functions € C~(6R2), n be the unit exterior normal to 62 and p be a real
C=-vector field on 0%.

Now we consider, for 1>0, the degenerate oblique derivative
problem :

QA—Du=f in Q,

(1) a(x)a—u + b(oc)—a-K +e(@)u=0 on 0%,
on oy

under the following assumptions:

1) a(x)=0.

(2) The set S={xecdfR;a(x)=0} is an (n—2)-dimensional C~-
manifold.

(3) wis trangversal to S in 90.

(4) c¢(x)>0 on the set {x €92 : a(x)=0}.

(5) Along the integral curve x(t,z,) of v passing x,¢S when
t=0, a(x(t, z,)) has a zero of finite order & at t=0, and b(x(t, ,)) has a
zero of finite order ! at £=0, where k¥ and [ are independent of .

Remark 1. In the case where b(x)#0 on S, our problem is the
oblique derivative problem which has been already treated by several
authors and we can remove the assumption (4) (see [2] and [6]). In
the case where b(x)=0, our problem was treated by S. It (see [3]) and
we can also remove the assumptions (2) and (5) (see the proof below).

For each real s, we denote by H,(2) and H,(©2) the usual Sobolev
spaces on 2 and 02 respectively, and by || |, and || |;, norms in
these spaces.

Theorem 1. Assume that l=k and the assumptions (1), (2), (4)
and (5) hold. Then there is a positive constant C such that, for u ¢ L*(Q)
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satisfying (I) with f e LY(2) we have

1.1 1%Ly, 0 < C(ISfllo, 0 + %110, 0)-

Furthermore, if 2is sufficiently large, there is a unique solution u € H,(2)

for every f e L*(2) and we can omit ||ull, , in the right hand side of (1.1).
Theorem 2. Assume that l<k, lis even and that the assumptions

), (2), (3),(4) and (5) hold. Then there is a positive constant C such

that, for w e LAQ) satisfying (1) with f e LYQ) we have

(2 JulissSCUS o+ ulhe)s  Where = 1.

Furthermore, if A is sufficiently large, there is a unique solution

we H,,,(2) for every f e LX), and we can omit || ul, o in the right hand
side of (1.2).

§ 2. Sketch of proofs.
Proof of Theorem1. First we consider the following problem:

A—Dv=f in 2,
(1) P 4 e =0  onon,
on oy
where p(x)= ng)) is naturally extended over 42 by the assumption

l=k. For sufficiently large 1, there is a unique solution v e H,(2)
satisfying (II) and

2.1 [V]le,a=C | fllo,0

where C is some positive constant.

The function w=wu—v satisfies

@a— A)w~ in 2,
(I1I1)
{ (z )— + b(x)—— +e@w |;p=—c(@)v|;, € H;/,(00).

Recalling the fact that if we define =, by Mo:Z—g for g € LA(R) satis-
n o0
fying
(A—Dg=0 in Q

v { ’
) Gla=p e H_,,00),
then z, is a first order elliptic pseudo-differential operator on 22, we
can reduce the problem (III) to the following equation.

(V) T w' = a(x)T,w’ + b(x) 5 + c(R)w' = — c(x)v°

where w'=w|,,. We now apply Melin’s theorem to the operator AT,
where A=(1—4)"? and 4’ is the Laplace-Beltrami operator on 912.
Since a(x) vanishes at least with second order by (1), we can prove that
Melin’s conditions are satisfied for the operator 4°T,. Hence we have

Re (LT p, p)=c: | bllse,00— 2111200 for any ¢ € C~(392)
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where ¢, and ¢, are positive constants and t<<3/2. On the other hand
we have
Re (LT ¢, ) =3 | Tillssz,00 [P lasz,00 for any ¢ € C=(39).
Therefore
| Bllssz,00 = Ul Tollssz,00 + I Blle,00)
for a suitable constant c. Hence we obtain w’ e H,,(32) and

2.2) [1%° 372,50 < €Ul T30 lly2,00 +11%°[le,00)-
Since w satisfies (IV) with ¢ replaced by w’ e H,,(052), we have
(2.3) I w”z‘.o =c “wo||3/z,an-

Hence, from (2.1), (2.2), (2.3) and u=v+w, we obtain
%]l 0 = (] S, 0+l %llo,0)-

We define the map I,: YT)={p € H;,(02) ; T:p € H;,,(08)}—H,,,(622)
by =T for o € D(I,). Then the existence and the uniqueness of
solution of the problem (I) are derived from those of the problem T
=+. We apply Agmon’s technique, that is, increasing the number of
independent variables (see [1]), we obtain for large A

uuno,agg =Dl

for any wu satisfying the boundary condition of (I). Hence the map
9, must be one-to-one.
Next we consider

QA—Du=f in Q,
2.4) {a(x)ﬁ"i n (b(x) i)*u+ e(@)u -+ (@(@)m,)* —a(@)m, ) o =0,
on oy

where =1, and P*(x, D) denotes the formal adjoint of the pseudo-
differential operator P(x, D).
Considering the problem:

QA—MDv=f in 2,

ov ov

{5; s =0,

and setting u=v 4w, we obtain the following pseudo-differential equa-
tion (2.5) on the boundary corresponding to (V):

2.5  a@)mw'+ (b(x)ai)*w°+ c@)w’ + (a(@)z,)* —a(@)r )w'=g
) 2]
where
_ KB C 0\, 0 _ 0
9= {(b(x) 2 +(b<x> Z ) )v +e(@)v'+ (a(@)m,)* a(x)n#)v}.

We note that the left hand side of (2.5) equals T} when px=2. It follows
from the calculus for the pseudo-differential operators with parameter
that there is a positive constant ¢, independent of x such that

1(@@)7)* — @7 )plpa=Cs|plsso  for any g e H,(62).
Hence, by the same argument as above, we find a positive constant ¢
independent of x such that
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||uno,,,§§||(z—d>uno,a

for any u satisfying (2.4) and for large 2. We define the map I¥,:
DEIE)={pe H_ ,,092); TFpe H_;,(02)}—>H _,,(02) by I¥p=TFep for ¢
€ D(T¥). Then J¥, is one-to-one. If we denote by I¥ the adjoint of
9, with respect to the pairing of H,,(32) and H_,,(62), then T¥,DT%.
Hence 9, is onto for large 1 since <, has a closed range which consists
with the orthogonal complement of the null space of %. Theorem 1
is thus proved.

Proof of Theorem 2. Considering (II) below in place of (II),
one can prove Theorem 2 by the same argument as the proof of Theo-
rem 1:

(a— A)v f in 2,
{n a@ P+ o,
oY oo
where a(x)= agg is naturally extended over 42 by the assumption

I<k. This oblique derivative problem has a unique solution v ¢ H,, ,(2)
for large A (see [4]).
Remark 2. For s=1, by considering 4**3T, in place of A°T,, one
can easily obtain a priori estimates
|@ferz0= (1 Fll0+]2lo0)  in place of (1.1)
and
1 %llss145,0 =€ S lls,0 +Il%lo,0)  in place of (1.2).

If we define J on D)= {u e LX) ; (Q—Du e LX(Q), a(x)g—u
n

+b(x)——+c(x)u]a,,-0} by JAu=—(A,—MDu for uc D(A), then by the

same argument as the proofs of Theorems 1 and 2 one can prove that
Theorem 3. The spectrum of A is discrete and the eigenvalues
of A have finite multiplicity. Moreover A=re? (0<0<2r,0+n) is
contained in the resolvent set of A if r is sufficiently large.
Remark 3. In all the Theorems stated above one can replace 4 by
_ ,Z i) a z b (x)— +d(z) where a;,(x),b,(x) and d(z) are
i,7= Xy j j=1
functlons e C=(Q) and q, j(x)’s are real-valued functions satisfying

Z o ()€€, = ¢ |£]F with some constant C>0.

i,j=1
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