28. Examples of Foliations with Non Trivial Exotic Characteristic Classes

By Kenzi YAMATO Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Feb. 12, 1974)

1. Introduction. In [1], R. Bott has defined the exotic characteristic classes for foliations as follows:

Let $q \geq 1$ be an integer.

First, a cochain complex (WO_q, d) is defined. Let $R[c_1, \dots, c_q]$ denote the graded polynomial algebra over R generated by the elements c_i with degree 2i. Set

 $\boldsymbol{R}_{q}[c_{1}, \cdots, c_{q}] = \boldsymbol{R}[c_{1}, \cdots, c_{q}]/\{\phi; \deg(\phi) > 2q\}.$

Let $E(h_1, h_3, \dots, h_r)$ denote the exterior algebra over **R** generated by the elements h_i with degree 2i-1, where r is the largest odd integer $\leq q$. Then, as a graded algebra over **R**

$$WO_q = \mathbf{R}_q[c_1, \cdots, c_q] \otimes E(h_1, h_3, \cdots, h_r)$$

and a unique antiderivation of degree 1 $d: WO_a \rightarrow WO_a$

is defined by requiring

 $d(c_i) = 0, \quad i = 1, \dots, q$ $d(h_i) = c_i, \quad i = 1, 3, \dots, r.$

Secondly, given a C^{∞} -smooth codimension q foliation (N, \mathcal{F}) on an oriented manifold N without boundary, a homomorphism of cochain complexes

$$\lambda_{(N,\mathcal{F})}: WO_q \rightarrow A_c^*(N)$$

is defined, where $A_{\mathcal{C}}^*(N)$ denotes the space of complex smooth forms on N. We used the notation $\lambda_{(N,\mathcal{F})}$ in place of λ_E of Bott [1]. Here the homomorphism $\lambda_{(N,\mathcal{F})}$ depends only on the choices of two connections on the normal bundle of the foliation (N,\mathcal{F}) called metric and basic.

In cohomology, $\lambda_{(N,\mathcal{F})}$ induces a homomorphism of graded *R*-algebras

 $\lambda^*_{(N,\mathcal{F})}: H^*(WO_q) \rightarrow H^*(N; C)$

which does not depend on the choices of the above connections.

The elements of $\lambda_{(N,\mathcal{F})}^*(H^*(WO_q))$ are called the exotic characteristic classes for the foliation (N,\mathcal{F}) .

In this paper, we construct the examples of foliations with non trivial exotic characteristic classes, that is,

Theorem. For any integer $q \ge 1$, there exists a C^{∞} -smooth

К. ҮАМАТО

codimension q foliation (M, \mathcal{F}) on a closed (2q+1)-manifold such that all the exotic characteristic classes for the foliation which correspond to the canonical generators of $H^{2q+1}(WO_q)$ are non zero in $H^{2q+1}(M; \mathbb{C})$.

Remark. When q=1, the generator $[c_1 \cdot h_1]$ of $H^3(WO_1) \cong \mathbb{R}$ is called the Godbillon-Vey invariant and R. Roussarie constructed an example of foliation with non trivial Godbillon-Vey invariant (see Bott [1]).

The author is grateful to Professor H. Ozeki and Mr. A. Ikeda for their advices.

Detailed proof will appear elsewhere.

2. Construction of (M, \mathcal{F}) . Throughout this paper, integer $q \ge 1$ is to be fixed and all foliations are to be C^{∞} -smooth codimension q foliations.

Let
$$O(q+1, 1) = \{X \in GL(q+2; R); {}^{t}XBX = B\}$$
, where
 $B = \begin{pmatrix} I_{q+1} & 0 \\ 0 & -1 \end{pmatrix}$.

Define subgroups $H \subset K \subset G$ of the Lie group O(q+1, 1) as follows: G is the identity component of O(q+1, 1),

$$H = \left\{ \begin{pmatrix} X & 0 \\ 0 & I_2 \end{pmatrix}; X \in SO(q) \right\}$$

$$K = \left\{ X = (x_{ij}) \in G; \begin{array}{c} \det \begin{pmatrix} x_{q+1 \ q+1} \ x_{q+1 \ q+2} \\ x_{q+2 \ q+1} \ x_{q+2 \ q+2} \end{pmatrix} = 1, \\ \text{and } x_{i \ q+1} + x_{i \ q+2} = 0, \text{ for } i = 1, \dots, q \right\}.$$

Then G/H is an open orientable (2q+1)-manifold and G/K is a q-manifold.

Set $\overline{M} = G/H$, and \overline{M} is foliated into the fibres of the fibre bundle $\overline{M} = G/H \rightarrow G/K$. We denote this foliation by $(\overline{M}, \overline{\mathcal{F}})$. Clearly, the foliation $(\overline{M}, \overline{\mathcal{F}})$ is a G-invariant foliation of codimension q on \overline{M} .

By A. Borel [2], G admits a discrete subgroup D such that the quotient space $M = D \setminus \overline{M}$ is a closed orientable (2q+1)-manifold. Since the foliation $(\overline{M}, \overline{\mathcal{F}})$ is G-invariant, M has a codimension q foliation (M, \mathcal{F}) induced naturally from $(\overline{M}, \overline{\mathcal{F}})$.

3. Exotic characteristic classes. It is easy to see the following.

Lemma 1. Each canonical generator of $H^{2q+1}(WO_q)$ is represented by some $\phi \cdot h_j \in WO_q$, where $\phi \in \mathbf{R}_q[c_1, \dots, c_q]$ is a monomial with degree 2(q-j+1).

In this section, all manifolds are to be oriented manifolds without boundary.

Let (N, g) be a Riemannian manifold and V the Riemannian connection on N. For any foliation (N, \mathcal{F}) , let $\tau(\mathcal{F})$ (resp. $\nu(\mathcal{F})$) denote the subbundle of $\tau(N)$ tangent (resp. normal) to the foliation. Then a metric connection V^0 and a basic connection V^1 on $\nu(\mathcal{F})$ are defined as follows: **Examples of Foliation**

 $egin{aligned} &\mathcal{V}_{\mathcal{X}}^{0}(Y) \!=\! \pi \mathcal{V}_{\mathcal{X}}(Y) \ &\mathcal{V}_{\mathcal{X}}^{1}(Y) \!=\! \pi [X_{\tau(\mathcal{F})},Y] \!+\! \mathcal{V}_{\mathcal{X}_{v}(\mathcal{F})}^{0}(Y) \end{aligned}$

for any $X \in \mathfrak{X}(N)$, $Y \in \Gamma(\nu(\mathcal{F}))$, where $\pi : \tau(N) \to \nu(\mathcal{F})$ is the natural projection and $X_{\tau(\mathcal{F})} \in \Gamma(\tau(\mathcal{F}))$, $X_{\nu(\mathcal{F})} \in \Gamma(\nu(\mathcal{F}))$ are such that $X = X_{\tau(\mathcal{F})} + X_{\nu(\mathcal{F})}$.

Then the homomorphism of cochain complexes

 $\lambda_{(N,\mathcal{F})}: WO_q \to A_c^*(N)$

is uniquely determined from the above connections \mathcal{V}^0 and \mathcal{V}^1 , hence from the foliation (N, \mathcal{F}) and the Riemannian metric g. Thus we denote this $\lambda_{(N,\mathcal{F})}(\omega)$ by $\omega((N,\mathcal{F}), g)$ for $\omega \in WO_q$. Then we have the followings.

Lemma 2. Let G be a Lie group and N be a G-manifold with a G-invariant Riemannian metric g. If a foliation (N, \mathcal{F}) is G-invariant, then $\omega((N, \mathcal{F}), g)$ is also G-invariant for any $\omega \in WO_q$.

Lemma 3. Let \overline{N} be a covering manifold over N with projection p. If N has a foliation (N, \mathcal{F}) . Then,

 $p^*\omega((N,\mathcal{F}),g) = \omega((\overline{N},p^*\mathcal{F}),p^*g)$

for any $\omega \in WO_q$ and a Riemannian metric g on N, where $(\overline{N}, p^*\mathcal{F})$ (resp. p^*g) is the pull back of (N, \mathcal{F}) (resp. g).

4. Outline of the proof of theorem. Let $(\overline{M}, \overline{\mathcal{F}})$ and G be as in Section 2. Then the following is a key lemma for the calculation of $\lambda_{(\overline{M}, \overline{\mathcal{F}})}$.

Lemma 4. There exist a G-invariant Riemannian metric g on \overline{M} and a 1-form θ on \overline{M} such that the followings hold:

(1) At $o = H \in \overline{M} = G/H$, $c_i((\overline{M}, \overline{\mathcal{F}}), g) = \alpha_i(\sqrt{-1}/2\pi)^i(d\theta)^i, \alpha_i > 0$,

$$h_j((\overline{M},\mathcal{F}),g) = \beta_j(\sqrt{-1/2\pi})^j(d\theta)^{j-1}\wedge\theta,\beta_j > 0$$

for i=1, ..., q, j=1, 3, ..., r.

(2) The (2q+1)-form $(d\theta)^q \wedge \theta$ is non zero at $o \in \overline{M}$.

It follows from Lemma 1 and Lemma 4 that all the differential forms which correspond to the cochains representing the canonical generators of $H^{2q+1}(WO_q)$ are non zero at $o=H \in \overline{M}=G/H$. Then these differential forms are G-invariant and nowhere zero on \overline{M} by Lemma 2. Hence they induce nowhere zero differential forms on M. In view of Lemma 3, the exotic characteristic classes for (M, \mathcal{F}) corresponding to the canonical generators of $H^{2q+1}(WO_q)$ are represented by these differential forms. Therefore they are non zero in $H^{2q+1}(M; \mathbb{C})$.

References

- R. Bott: Lectures on Characteristic Classes and Foliations. Lecture Notes in Math., No. 279, Springer-Verlag (1972).
- [2] A. Borel: Compact Cliford-Klein forms of symmetric spaces. Topology, 2, 111-123 (1963).