22. Uniqueness in the Cauchy Problem for Partial Differential Equations with Multiple Characteristic Roots

By Waichirô Matsumoto
Kyoto University
(Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1974)

1. Introduction. We are concerned with the uniqueness theorem in the Cauchy problem for the following type of partial differential equations:

$$
P u \equiv \partial_{t}^{m} u+\sum_{|\alpha|+j \leqslant m} a_{\alpha, j}(x, t) \partial_{x}^{\alpha} \partial_{t}^{j} u=0, \quad\left(x \in R^{l}\right)
$$

Here we assume $a_{\alpha, j}(x, t)$ are sufficiently smooth functions. In the case where the characteristic roots are simple and the coefficients $a_{\alpha, j}(x, t)$ $(|a|+j=m)$ are all real, A. P. Calderón [1] proved the uniqueness theorem in 1958. When (x, t) is two-dimensional, T. Carleman [2] obtained the same result as early as 1938. S. Mizohata [6] proved the uniqueness in the case of elliptic type of order 4 with smooth characteristic roots. Many authors have studied the uniqueness with at most double smooth characteristic roots ([3], [5], etc.). Then a study for elliptic type with triple characteristic roots, was made by K. Watanabe [10], under the assumption that the multiplicity of the characteristic roots is constant.

The purpose of this note is to announce with a short proof a result on the uniqueness theorem for operators with multiple characteristic roots. A forthcoming article will give a detailed proof. Let us consider the following type of operator:

$$
P=P_{p}\left(x, t ; \partial_{x}, \partial_{t}\right)^{m}+P_{m p-1}\left(x, t ; \partial_{x}, \partial_{t}\right)+R\left(x, t ; \partial_{x}, \partial_{t}\right),
$$

where $m \geqslant 2$ and $p \geqslant 1$. Here we assume that, 1) P_{p} is a homogeneous partial differential operator of order p with real coefficients, continuously differentiable up to order $l+\max \{m p, 6\}$. Moreover its characteristic roots $\left\{\lambda_{j}(x, t ; \xi)\right\}_{1 \leqslant j \leqslant p}$ of $P_{p}(x, t ; \xi, \lambda)=0$ are distinct for all real $\xi(\neq 0), 2) P_{m p-1}$ is a homogeneous partial differential operator of order $m p-1$ with real coefficients belonging to $C^{l+\max (m p-1,5)}$, 3) R is a partial differential operator of order at most $m p-2$, with bounded measurable coefficients.

Let $\left\{\lambda_{j}(x, t ; \xi)\right\}_{1 \leqslant j \leqslant p}$ be the characteristic roots of P_{p}. We introduce the following conditions.
(A) $\left.\quad P_{m p-1}(0,0 ; \xi, \tau)\right|_{\tau=\lambda_{j}(0,0 ; \xi)} \neq 0 \quad$ for all $\xi \in R^{l}-\{0\} \quad(1 \leqslant j \leqslant p)$
($\left.\mathrm{B}_{1}\right)\left.\quad P_{m p-1}(x, t ; \xi, \tau)\right|_{\tau=\lambda_{j}(x, t ; \xi)} \equiv 0 \quad$ for all $(x, t, \xi) \in U \times\left(R^{l}-\{0\}\right)$
$(1 \leqslant j \leqslant p)$
U being a neighbourhood of the origin.
$\left(\mathrm{B}_{2}\right) \quad\left(\mathrm{B}_{1}\right)$ and $\left.\partial_{\tau} P_{m p-1}(0,0 ; \xi, \tau)\right|_{\tau=\lambda_{j}(0,0 ; \xi)} \neq 0 \quad$ for all $\xi \in R^{l}-\{0\}$

$$
(1 \leqslant j \leqslant p)
$$

Then our result is the following
Theorem. If $m=2$ and all λ_{j} satisfy the condition (A) or $\left(\mathrm{B}_{1}\right)$, or if $m \geqslant 3$ and all λ_{j} satisfy the condition (A) or $\left(\mathrm{B}_{2}\right)$, the solution $u(x, t) \in C^{m p}$ of

$$
\left\{\begin{array}{l}
P u=0 \\
\left.\partial_{t}^{j} u\right|_{t=0}=0 \quad(0 \leqslant j \leqslant m p-1)
\end{array}\right.
$$

vanishes identically in a neighbourhood of the origin.
2. Some comments to the above new type conditions. When we don't assume the above condition (A), (B_{1}) or (B_{2}), the following examples show that we should assume another kind of conditions in order to obtain the uniqueness theorem. First, we give an example of elliptic type.

Example 1 (A. Pliś [9]). Let $l \geqslant 1, m \geqslant 6$, and $\frac{m+3}{2}<n \leqslant m-1$, $k>\frac{m-1}{2 n-m-3}, \Delta$ be the Laplacian in $R_{x}^{l} \times R_{t}^{1}$. There is an operator Q of order at most $2 m-2$ and $u(x, t)=u\left(x_{1}, t\right) \in C^{\infty}$ satisfying

$$
\left\{\begin{array}{l}
{\left[\Delta^{m}+P_{2 m-1}+t^{k}\left(\partial_{t}+i \partial_{x_{1}}\right)^{m}\left(i \partial_{x_{1}}\right)^{n}+Q\right] u=0,} \\
u \equiv 0 \quad(t \leqslant 0)
\end{array}\right.
$$

where $P_{2 m-1}$ is an arbitrary operator of order $2 m-1$ containing only $\partial_{x_{2}}, \cdots, \partial_{x_{l}}$, and $u(x, t)$ never vanishes in any neighbourhood of the origin.

Note that the term of order $2 m-1$ at the origin is nothing but $P_{2 m-1}\left(0,0 ; \partial_{x_{2}}, \cdots, \partial_{x_{l}}\right)$. This shows that neither (A) nor $\left(B_{2}\right)$ is satisfied.

Next, we give an example of hyperbolic type.
Example 2 (L. Hörmander [4]). Let $l \geqslant 1, r \geqslant 2$. There exist functions $a(x, t)$ and $u(x, t)=u\left(x_{1}, t\right) \in C^{\infty}$ satisfying $a(0,0)=0$, and

$$
\left\{\begin{array}{l}
\partial_{t}^{r} u+P_{r-1} u+a(x, t) \partial_{x_{1}} u=0, \\
u \equiv 0 \quad(t \leqslant 0),
\end{array}\right.
$$

where P_{r-1} is an arbitrary operator of order $r-1$ containing only $\partial_{x_{2}}, \cdots, \partial_{x_{l}}$, and $u(x, t)$ never vanishes in any neighbourhood of the origin.
3. Outline of the proof of the theorem. In the case under the condition (B_{1}) or (B_{2}), we can easily obtain the theorem by applying the result under the condition (A). Thus we give the proof of the theorem under the condition (A).

Reduction to a system of first order. We modify $u \equiv 0$ when $t \leqslant 0$, then u remains as a solution of $P u=0$. When we perform a Holmgren's transformation, all the conditions in the theorem are in-
variant. Moreover, modifying the coefficients out of the neighbourhood of the origin, we can assume

$$
\left.\left|P_{m p-1}(x, t ; \xi, \tau)\right|_{\tau=\lambda_{\jmath}(x, t ; \xi)}\left|\geqslant \delta_{0}\right| \xi\right|^{m p-1},
$$

where δ_{0} is a positive constant.
Let us reduce the equation to a system of first order regarding $\left(P_{p}\right)^{m}+P_{m p-1}$ as the principal part, in the same way as S . MizohataY. Ohya [8], then we have

$$
\tilde{P} U \equiv D_{t} U-H U-B U=0,
$$

where $D_{t}-H$ is the principal part of the new equation. Then the characteristic roots of $\operatorname{det}(\mu I-H(x, t ; \xi))=0$ can be expanded with respect to $|\xi|^{-1 / m}$ in the sense of Puiseux by virtue of the condition (A) and they are distinct. More precisely,

Lemma 3.1. The characteristic roots $\left\{\mu_{i}^{(j)}\right\}_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant m}}$ are expanded in the following manner,

$$
\mu_{i}^{(j)}(x, t ; \xi)=\lambda_{i}(x, t ; \xi)+\sum_{k=1}^{\infty} \nu_{i, k}^{(j)}(x, t ; \xi)|\xi|^{1-k / m},
$$

where $\left(\nu_{i, 1}^{(j)}\right)^{m}=\left.\sqrt{-1} P_{m p-1}(x, t ; \xi, \tau)\right|_{\tau=\lambda_{i}(x, t ; \xi)} / \prod_{k \neq i}\left(\lambda_{i}(x, t ; \xi)-\lambda_{k}(x, t ; \xi)\right)^{m}$ for $1 \leqslant i \leqslant p, 1 \leqslant j \leqslant m$, and where $\nu_{i, k}^{(j)}$ are homogeneous order 0 with respect to ξ and belong to $C_{(x, t)}^{2+5} \times C_{\xi}^{\infty}$.

Note that the imaginary part of $\nu_{i, 1}^{(j)}$ never vanishes.
Now, let us construct the diagonalizator $\mathcal{I}(x, t ; \xi)$ of $H(x, t ; \xi)$. Let us put $\mathscr{I}(x, t ; \xi)=\left(n_{i j}(x, t ; \xi)\right)$.

Lemma 3.2. We have

$$
n_{i j}=\prod_{k=j-p[j / p]+1}^{p}\left(\mu_{r}^{(s)}-\lambda_{k}\right)\left\{\nu_{r, 1}^{(s)} \prod_{k \neq r}\left(\mu_{r}^{(s)}-\lambda_{k}\right)\right\}^{m-[j / p]-1} \text { mod. order -1, }
$$

where $r=i-p\left[\frac{i-1}{p}\right], s=\left[\frac{i-1}{p}\right]+1$.
Because $\mu_{i}^{(j)}$ is not homogeneous, $\mathcal{N}(x, t ; \xi)$ degenerates near the point at infinity. So the operator with the symbol $\mathscr{M}=\mathscr{N}^{-1}$ is not bounded, but by the detailed consideration we can see that the order of $m_{i j}\left(x, t ; D_{x}\right)$, the (i, j)-element of \mathcal{M}, is at most $1-\left(1 / m\left[\frac{i-1}{p}\right]+1\right)$.

The above fact gives us $\|\mathscr{I} U\| \geqslant$ const. $\left\|(\Lambda+1)^{-1+1 / m} U\right\|$ if we restrict h sufficiently small.

Energy with a weight function. From now on, we assume $u \not \equiv 0$ in any neighbourhood of the origin.

Operating \mathcal{N} to $\tilde{P} U=0$, we have

$$
\Re \tilde{P} U=D_{t} \Re U-\mathscr{D} \Re U-\Re_{t}^{\prime} U-(\Re H-\mathscr{D} \Omega) U-\Re B U=0,
$$

where \mathscr{D} is a diagonal matrix whose diagonal elements are $\mu_{i}^{(j)}$. Let us estimate the energy of $\mathscr{N} \tilde{P} U$ with a weight function $\varphi_{n}(t)=\left(t+\frac{1}{n}\right)^{-n}$, namely $E_{n}=\int_{0}^{h} \varphi_{n}^{2}(t)\|\mathscr{I} \tilde{P} U(t)\|^{2} d t$. Concerning the two terms, $\mathscr{I}_{t}^{\prime} U$ and
($\mathfrak{H} H-D \Re) U$, we have

$$
\begin{aligned}
& \left\|I_{t}^{\prime} U\right\| \leqslant \text { const. }\left(\|\Re N U\|+\left\|(\Lambda+1)^{-1} U\right\|\right), \\
& \|(\mathfrak{T H}-\mathscr{D T}) U\| \leqslant \text { const. }\left(\|\Re U\|+\left\|(\Lambda+1)^{-1} U\right\|\right) \text {. }
\end{aligned}
$$

Then a slight modification of the Calderón's argument in [1] (see also S. Mizohata [7]), gives the following proposition.

Proposition. For large n, we have

$$
\begin{aligned}
E_{n} \geqslant & \text { const. }\left\{\frac{1}{n} \sum_{j=0}^{m p-1} \int_{0}^{h} \varphi_{n}^{2}(t)\left\|\partial_{t}^{j} u(t)\right\|_{m p-j-1}^{2} d t\right. \\
& \left.+n \sum_{j=0}^{m p-1} \int_{0}^{h} \varphi_{n}^{2}(t)\left\|(\Lambda+1)^{-1+1 / m} \partial_{t}^{j} u(t)\right\|_{m p-j-1}^{2} d t\right\}
\end{aligned}
$$

On the other hand, since $\Re \tilde{P} U=0$, we have $E_{n}=0$. This is inconsistent with the above inequality, so we have the theorem.

References

[1] A. P. Calderón: Uniqueness in the Cauchy problem for partial differential equations. Amer. Jour. Math., 80, 16-36 (1958).
[2] T. Carleman: Sur un problème d'unicité pour les systèmes d'équation aux dérivées partielles à deux variables independantes. Ark. för Math. Astr. Fys., 26B (no. 17), 1-9 (1939).
[3] L. Hörmander: On the uniqueness of the Cauchy problem. II. Math. Scand., 7, 177-190 (1959).
[4] -: Linear Partial Differential Operators. Die Grundlehren der math. Wissenschaften, Band 116. Academic Press, New York; Springer-Verlag, Berlin, 225-228 (1963).
[5] B. Malgrange: Unicité du problème de Cauchy la méthode de Calderón. Seminaire Schwartz, 4^{e} année, no. 8-10 (1959/60).
[6] S. Mizohata: Unicité du prolongement des solutions des équations elliptiques du quatrième ordre. Proc. Japan Acad., 34, 687-692 (1958).
[7] -: The Theory of Partial Differential Equations. Cambridge Univ. Press, 370-371 (1973).
[8] S. Mizohata and Y. Ohya: Sur la condition d’hyperbolicité pour les équations à caractérestiques multiples. II. Japan Jour. Math., 40, 63-104 (1971).
[9] A. Pliś: A smooth linear elliptic differential equation without any solution in a sphere. Comm. Pure Appl. Math., 14, 599-617 (1961).
[10] K. Watanabe: On the uniqueness of the Cauchy problem for certain elliptic equations with triple characteristics. Tôhoku Math. Jour., 23, 473-490 (1971).

