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1. Introduction. We consider boundary problems for elliptic
differential equations. When the manifold (with boundary) is compact
and its boundary is smooth, the indexes of elliptic boundary problems
are finite (see [1], etc.). When the manifold is not compact or the data
are not given on the entire boundary, the situation is different. Such
cases will be studied in this and the forthcoming papers (see Theorem 3).

Let I be a g-compact C* manifold (without boundary), and 2 an
open subset of M. Let w be an open subset of the topological boundary
of 2 in M. Then we denote by 2* the pair of 2 and w. We also use
0% to denote the union of 2 and w. Take an open subset 2, of I such
that £ is contained in 2, and the intersection of £, and the boundary
of 2 in I is equal to w.

Let (2, be a subspace of 9'(2,) with a locally convex topology
(For the notation of our function spaces, see [1].). Let p be the restric-
tion mapping of 9'(2,) to 9'(2). Then we denote by F(2*) the space
o(F(2y), that is, F(Q*)={u e L' (D) ; u=p(u,) for some u, € F(2,)}. This
space is endowed with the strongest locally convex topology such that
p is continuous from F(2,) onto F(2*). Next we denote by F(2*) the
closed subspace of (2, defined by @(Q*):{u e F(0Qy); supp uC 2*}.

In this paper we assume that o is of C~ class. Let R denote the
trace operator of C*(2*) onto C~(w). Take a C= vector field v in a
neighborhood of w which is not tangential to . By D, we denote the
differentiation in the direction ». Write y,=(R,R-D,RoD? ...,
R o D™ 1), for a natural number m.

2. Function spaces C*(£2*) and C=(2%). Proposition 1. The space
C=(2*) is separable Fréchet Montel and its dual space is isomorphic to
E(Q*).

Outline of the proof. Since C~(f,) is a Fréchet-Schwartz space,
C=(2%) is also Fréchet-Schwartz (see [2]). Then the former part of the
proposition follows. Moreover the dual space of C~(Q*) is isomorphic
to the polar of C=(2*) in £'(2,). Using a result due to Schwartz [5], p. 93,
we can easily obtain the latter part of the proposition.

Proposition 2. Let se R and ye C*(2,). Take a compact subset
K, in the interior of K=supp y. Set
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p@=inf {[x- ¥ ;¥ € C(2y) and ¥ [p=4¢}, ¢ e C~(2%),
where ||| s @ Sobolev norm (see [1]). Then u e HS_,(2,) and supp u
CR*NK, implies the existence of a positive constant a such that |[ull,
=inf {C>0;|u@)|=C-p(@), e C*(Q")}=a-||u|_sy. Moreover ue E(9%)
and ||ull, < oo implies that supp uC 2* N K and there exists a positive
constant B such that ||ul|_, <B-||u|,.

The proof of this proposition is straightforward and does not con-
tain any difficulty.

We can use the above propositions to apply our result in the previ-
ous paper [3], and then we obtain the following results.

3. Elliptic equations in C=(2%). Let P be an m=2I-th order el-
liptic differential operator in £,, thatis, P,(x, &) =0 if x € 2, and £+0,
where P,, is the top symbol of P. We consider the following linear
differential equation:

(1) Pw=r,
where f and u are C= functions in C=(2%).

Theorem 3. Suppose 2,1s a real analytic manifold and P is an el-
liptic diff erential operator with real analytic coefficients in 2,. To every
relatively compact open subset U of 2, the union of all compact con-
nected components of 2*\U 1is supposed to be relatively compact. Then
the equation (1) has a solution u e C=(2*) for every fe é”(Q*), which
satisfies ¢(f)=0 when ¢e &' (Q*) and 'P(¢)=0. Here 'P is the dual
operator of P.

Outline of the proof. To prove this theorem, we consider a linear
operator T of C=(2*) into C~(Q*)x C=(w)™ which is defined by T(u)
=(P), yn(w). Suppose that the range of T is closed. Let fe C=(2%)
satisfy #(f)=0 when ¢ e &' (Q*) and ‘P(¢)=0. Then (f,0,-..,0) is
contained in the range of T, and hence there exists u ¢ C~(2*) which
satisfies P(w)=f in 2 and 7,(w)=0. Then « becomes a solution of (1).
Therefore it is enough to prove that the range of T is closed.

Combining the results of section 2 and the previous paper [3], and
the well-known regularity theorem for elliptic boundary problems (see
[1]), we immediately obtain the following lemma.

Lemma 4. The range of T is closed if and only if the following
two requirements hold.

(i) To every compact set KC Q* there exists another compact set
K'CQ* such that ©e H:W(Q%), ¢, Ho o pup(@), i=1,2,---,m, and
supp CP(@)+> ™, 'Di{ - ‘R(¢,)) CK implies the existence of another
U e Ho (%) and vy € Hppyjop @), §=1,2, - - -, m which satisfy
(2) supp ¥CcK’, supp ¥, CK No, i=12,...,m,
and
(3) "P(D)+ 3 71 'Di7 o 'R(p ) ="PW) + > 71 'Di o 'R(¥r ).
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(i) To every compact set KC Q* there exists a positive constant
C such that @ He (2%, ¢, H_ . 113, (@), supp @C K, and supp ¢,C KNw,
7=1,2, ..., m implies the existence of another ¥ e H¢(2%), and
YvyeHi (@), 1=1,2, - - -, m which satisfy (2),(3), and
(4) NN+ 27 1 leme o SC- NP+ 2571 DI o PFR(Y ) [l -y

Now we prove the requirement (i) of the above Lemma. Let K be
a compact subset of 2*. Choose a relatively compact open subset U of
2, which contains K. Let K’ denote the closure of the union of U N Q*
and all compact connected components of 2*\U. From an assumption
of Theorem 3, K’ is a compact subset of 2*.

Suppose that @ e He,(2%), ¢=(¢y, - - In) € F=[[T1 Hi ;.3 (@)
and supp CP(@) +‘r.(#)CK. Then ‘P(®) is equal to zero in 2\K, and
hence @ is real analytic in Q\K (see Petrowsky [4]). Therefore @ is
equal to zero in 2\K’. Since @ is an L* function with support in 2%,
O is equal to zero in Q,\K’ Then ',(¢) is also equal to zero in w\K’
and hence ¢ becomes zero in w\K’. This completes the proof of (i).

Next we prove the requirement (ii) of Lemma 4. Let K be a com-
pact subset of Q% Suppose that @ e H: (2%, ¢=(b, -, dn) € F,
supp@CK, and suppg, CK Nw, j=1,- - - ,m. Write /[ty =2 71/I¢ s+ 541
se R. In the following C represents a generic constant which does not
depend on the choice of @ and ¢. Since ‘P is elliptic and hence has a
parametrix, we have the following estimate.

(5) [[@]](0,§C-|]‘P(@)H(_m)+C-|]@||(_1).

Let y be a C~ function with compact support in » such that y=1 in
a neighborhood of KNw. Then we can prove the existence of a con-
tinuous linear operator S of G=T[7 . Hx ;_5(w) into H{(2*) and a
pseudo-differential operator Q_.. of degree — oo onw such that Po S(y-u)
=0and ToS(x-w=yx-u+Q_.(x-u), uec G (see [6], etc.). Using these S
and Q_.., we can easily obtain the estimate
(6) 1811y < C-[FP@) + 7 (D) s + C- 1 -

From (5) and (6) we have the estimate
(1) NPl +@lliemy =C-[I*"P@) + 1 (B ey + C-[| Pl 1y + C-[| Sl m—ry-

Now suppose that (ii) of Lemma 4 does not hold. Then there exist
sequences @, € I-iffo)(!)*) and ¢, € F, n=1,2, ... such that

(@) supp@,CK, supp ¢, CKNw, and ||"P(D,) + Y n(Bn) | (-m—0 as
n—oo,

(b) there exist ¥, € H,(2*) and v, ¢ F which satisfy supp ¥, C K,
SUpp ¥y € K N w, ‘P, + Ym (w(n)) ='P(D,) + m (¢(n)), and |7, ”(0)
F W le-my = ];’ and

(© TeH,,W*), ved, supp¥CK, suppyCKNw, and *P@)
+ 7 () =P (@) + F((ny) implies [T [lg, + ¥l Z1.

From Rellich’s theorem there exist subsequences of ¥, and .,
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n=1,2, ... which converges to some ¥, and 1, with respect to norms
I-ll—y, and ||-|[{-m_1, respectively. We write the subsequences by the
same letters. Then ‘P¥,)+ 7n(Vm,) converges to ‘P + 'y m(trq)=0.
Set ¥, =¥, —¥, and ¥{,,=vV@u,— Y, #=1,2, --.. Then it follows from
(c) that |27 |l + 1| ¥imllimy=1. But this contradicts (7), and hence (ii)
holds. This completes the proof of Theorem 3.
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