42. Symmetric Spaces Associated with Siegel Domains

By Kazufumi Nakajima
Department of Mathematics, Kyoto University
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1974)

Introduction. Let D be a Siegel domain of the second kind due to Pyatetski-Shapiro [2]. We then construct a symmetric Siegel domain in \bar{D} which is invariant under a suitable equivalence. At the same time we establish a structure theorem of the Lie algebra of all infinitesimal automorphisms of the domain D.

1. Let $\mathfrak{g}=\sum_{p} \mathfrak{g}^{p}\left(p \in Z,\left[\mathfrak{g}^{p}, \mathfrak{g}^{q}\right] \subset \mathfrak{g}^{p+q}\right)$ be a graded Lie algebra over R with $\operatorname{dim} \mathfrak{g}<\infty$. Then the radical \mathfrak{r} of \mathfrak{g} is a graded ideal. Concerning Levi decompositions of g, we obtain

Theorem 1. There exists a semi-simple graded subalgebra \mathfrak{B} of \mathfrak{g} such that $\mathfrak{g}=\mathfrak{g}+\mathfrak{r}$.
2. Denote by R (resp. by W) a real (resp. complex) vector space of a finite dimension, and by R_{c} the complexification of R. Let D be a Siegel domain of the second kind in $R_{c} \times W$ associated with a convex cone V in R and a V-hermitian form F on W. We denote by $g(D)$ the Lie algebra of all infinitesimal automorphisms of D. Kaup, Matsushima and Ochiai [1] showed that the Lie algebra $g(D)$ has the following graded structure:

$$
\begin{aligned}
\mathfrak{g}(D) & =\mathfrak{g}^{-2}+\mathfrak{g}^{-1}+\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2} \quad\left(\left[\mathfrak{g}^{p}, \mathfrak{g}^{q}\right] \subset \mathfrak{g}^{p+q}\right), \\
\mathfrak{r} & =\mathfrak{r}^{-2}+\mathfrak{r}^{-1}+\mathfrak{r}^{0} \quad\left(\mathfrak{r}^{p}=\mathfrak{r} \cap \mathfrak{g}^{p}\right),
\end{aligned}
$$

where \mathfrak{r} denotes the radical of $g(D)$. By using Theorem 1 we have
Theorem 2. There exists a semi-simple graded subalgebra $\mathfrak{B}=\sum_{p=-2}^{2} \mathfrak{B}^{p}$ of $\mathfrak{g}(D)$ such that
(1) $\mathfrak{J}^{1}=\mathfrak{B}^{1}$ and $\mathfrak{ふ}^{2}=g^{2}$,
(2) For any $X \in \mathfrak{B}^{0}$, the condition " $\left[X, \mathfrak{B}^{1}+\mathfrak{B}^{2}\right]=0$ " implies $X=0$.

Let \mathfrak{Z} be as in Theorem 2. Since \mathfrak{Z} is semi-simple, there exists a unique element E_{s} of \mathfrak{s}^{0} such that

$$
\left[E_{s}, X\right]=p X \quad \text { for } X \in \mathfrak{B}^{p} .
$$

We set

$$
\begin{aligned}
\mathfrak{r}_{0}^{-2} & =\left\{X \in r^{-2} ;[\mathfrak{F}, X]=0\right\}, \\
\mathfrak{r}_{s}^{-2} & =\left\{X \in r^{-2} ;\left[E_{s}, X\right]=-X\right\}, \\
\mathfrak{r}_{0}^{0} & =\left\{X \in r^{0} ;[\mathfrak{B}, X]=0\right\}, \\
\mathfrak{r}_{s}^{0} & =\left\{X \in r^{0} ;\left[E_{s}, X\right]=X\right\} .
\end{aligned}
$$

In the notations as above, we have the following
Theorem 3. The radical \mathfrak{r} has the following structure:
(1) $\mathfrak{r}^{-2}=\mathfrak{r}_{0}^{-2}+\mathfrak{r}_{s}^{-2}\left(\right.$ direct sum), $\mathfrak{r}_{0}^{-2} \supset\left[\mathfrak{r}^{-1}, \mathfrak{r}^{-1}\right]$,
$\mathfrak{x}^{0}=\mathrm{r}_{0}^{0}+\mathrm{r}_{s}^{0}$ (direct sum)
(2)
$\mathfrak{r}_{s}^{-2}=\left[\mathfrak{X}^{-2}, \mathfrak{B}^{0}\right]=\left[\mathfrak{x}^{0}, \mathfrak{B}^{-2}\right] \supset\left[\mathfrak{X}^{-1}, \mathfrak{B}^{-1}\right]$,
$\mathfrak{x}_{s}^{0}=\left[\mathfrak{r}^{0}, \mathfrak{z}^{0}\right]=\left[\mathfrak{r}^{-2}, \mathfrak{Z}^{2}\right] \supset\left[\mathfrak{r}^{-1}, \mathfrak{Z}^{1}\right]$,
$\operatorname{dim} \mathrm{r}_{\mathrm{s}}^{-2}=\operatorname{dim} \mathrm{r}_{\mathrm{s}}^{0}$.
(3) $\operatorname{ad} E_{s}=0$ on r $^{-1}$.
(4) \mathfrak{r}_{s}^{0} is an abelian ideal of g^{0} satisfying the followings:
a) $\left[x_{s}^{0}, \mathfrak{r}^{-1}+\mathfrak{r}_{0}^{-2}\right]=0$,
b) $\left[x_{s}^{0}, r_{s}^{-2}\right] \subset \mathfrak{r}_{0}^{-2}$.
3. Let $\mathfrak{\xi}$ be as in Theorem 2. Then we can see
(*)

$$
\left\{\begin{array}{l}
\mathfrak{g}^{-2}=\mathfrak{j}^{-2}+\mathfrak{r}^{-2} \text { (direct sum) } \\
\mathfrak{g}^{-1}=\mathfrak{j}^{-1}+\mathfrak{r}^{-1} \text { (direct sum) }
\end{array}\right.
$$

It is well known that the space g^{-2} (resp. g^{-1}) can be identified with the space R (resp. W). Then the subspace \mathfrak{g}^{-1} is a complex subspace. Denote by η_{s} the projection of $\mathfrak{g}_{c}^{-2}+g^{-1}\left(=R_{c} \times W\right)$ onto $\mathfrak{\xi}_{c}^{-2}+\mathfrak{j}^{-1}$ corresponding to the decompositions ($*$). And put $V_{s}=\eta_{s}(V)$. Then V_{s} is a convex cone in $\mathfrak{\zeta}^{-2}$ and the restriction F_{s} of F to $\mathfrak{\Im}^{-1}$ is a V_{s}-hermitian form on $\mathfrak{\xi}^{-1}$. Let S be the Siegel domain of the second kind in $\mathfrak{\xi}_{c}^{-2}+\mathfrak{\xi}^{-1}$ associated with V_{s} and F_{s}.

Proposition 4. The projection η_{s} maps D onto S.
We can also prove
Theorem 5. The Siegel domain S is a symmetric homogeneous domain and ξ may be identified with $g(S)$.

From the construction, we can see that S is contained in \bar{D}. Moreover we have

Proposition 6. If $\mathfrak{r}=0$, then $S=D$. And if $\mathfrak{x} \neq 0$, then S is contained in the boundary of D.

Proposition 4 gives a "fibering" of D. We have the following
Theorem 7. Let $a, b \in S$. Then the fibers $\eta_{s}^{-1}(a)$ and η_{s}^{-1} are holomorphically equivalent to each other. Moreover every fiber is holomorphically equivalent to a bounded domain.

The domain S is constructed from the subalgebra \mathfrak{F}. The following theorem implies the uniqueness of such domains.

Theorem 8. Let ξ^{\prime} be another semi-simple graded subalgebra as in Theorem 2 and let S^{\prime} be the corresponding symmetric domain. Then there exists $X \in \mathfrak{g}^{0}$ such that

$$
A d(\exp X) \mathfrak{z}=\mathfrak{z}^{\prime}, \exp X(S)=S^{\prime} \quad \text { and } \quad \exp X \circ \eta_{s}=\eta_{s^{\prime}} \circ \exp X .
$$

Proof of Theorem 8 uses Theorem 3.
4. We now consider domains over classical cones. Denote by $H^{+}(m, \boldsymbol{R})$ (resp. by $H^{+}(m, \boldsymbol{C})$) the set of all positive definite real symmetric (resp. complex hermitian) matrices of degree m. And denote by $H^{+}(m, K)$ the set $\left\{X \in H^{+}(2 m, C) ; J X=\bar{X} J\right\}$, where

$$
J=\left(\begin{array}{lll}
j & & 0 \\
j & & \\
0 & \ddots & j
\end{array}\right), \quad j=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

The sets $H^{+}(m, \boldsymbol{R}), H^{+}(m, \boldsymbol{C})$ and $H^{+}(m, \boldsymbol{K})$ are irreducible cones.
Proposition 9. Let D be a Siegel domain over a cone stated above. Suppose $\mathrm{g}^{-2} \neq\left[\mathrm{g}^{-1}, \mathrm{~g}^{-1}\right]$. Then $\mathfrak{g}^{1}=0$.

Furthermore we can find the associated symmetric domain S for any homogeneous Siegel domain constructed in [2] over these cones. In particular we can calculate $\operatorname{dim} \mathrm{g}^{1}$ and $\operatorname{dim} \mathrm{g}^{2}$. The results are as follows.
(i) The case $V=H^{+}(m, \boldsymbol{R})(m \geqq 2)$. Let $r(t)$ be an N-valued nondecreasing function on the interval $[1, s](s \in N)$ such that $r(s) \leqq m$. Denote by $M(p, q, C)$ the vector space of all $p \times q$ complex matrices, and put $W=\left\{\left(u_{k t}\right) \in M(m, s, C) ; u_{k t}=0\right.$ for $\left.k>r(t)\right\}$. Define a V-hermitian form F on W by $F(u, v)=1 / 2\left(u^{t} \bar{v}+\bar{v}^{t} u\right)$.

Theorem 10. Let D be a Siegel domain associated with V and F and let $n=r(s)$. Then $\operatorname{dim} g^{1}=0$, $\operatorname{dim} g^{2}=1 / 2(m-n)(m-n+1)$ and S is the Siegel domain of the first kind associated with the cone $H^{+}(m-n, \boldsymbol{R})$.
(ii) The case $V=H^{+}(m, C)(m \geqq 2)$. Let $r_{h}(t)$ be a function on [1, s_{h}] as in (i) ($h=1,2$). And let W_{h} be the complex vector space corresponding to $r_{h}(t)$. We set $W=W_{1} \times W_{2}$ and define a V-hermitian form F on W by $F(u, v)=u_{1}{ }^{t} \bar{v}_{1}+\bar{v}_{2}{ }^{t} u_{2}$, where $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$. For the domain corresponding to V and F, we have

Theorem 11. Assume $r_{1}\left(s_{1}\right) \geqq r_{2}\left(s_{2}\right)$.
(1) If $r_{2}\left(s_{2}\right)=m$. Then $\operatorname{dim} \mathfrak{g}^{1}=\operatorname{dim} \mathfrak{g}^{2}=0$ and $S=(0)$.
(2) If $r_{1}\left(s_{1}\right)<m$. Then $\operatorname{dim} \mathfrak{g}^{1}=0$, $\operatorname{dim} \mathfrak{g}^{2}=\left(m-r_{1}\left(s_{1}\right)\right)^{2}$ and S is of the first kind associated with $H^{+}\left(m-r_{1}\left(s_{1}\right), C\right)$.
(3) If $r_{1}\left(s_{1}\right)=m$ and $r_{2}\left(s_{2}\right)<m$. Let s_{1}^{\prime} be the integer $\left(s_{1}^{\prime}<s_{1}\right)$ such that $r_{1}\left(s_{1}^{\prime}\right)<r_{1}\left(s_{1}^{\prime}+1\right)=m$. (In the case $r_{1}(1)=m$, we put $s_{1}^{\prime}=r_{1}\left(s_{1}^{\prime}\right)=0$.) And let $n=\operatorname{Max}\left(r_{1}\left(s_{1}^{\prime}\right), r_{2}\left(s_{2}\right)\right)$. Then $\operatorname{dim} \mathrm{g}^{1}=2\left(s_{1}-s_{1}^{\prime}\right)(m-n), \operatorname{dim} \mathfrak{g}^{2}$ $=(m-n)^{2}$ and $S=\left\{(z, w) \in M(m-n, m-n, \boldsymbol{C}) \times M\left(m-n, s_{1}-s_{1}^{\prime}, \boldsymbol{C}\right)\right.$; $\left.\sqrt{-1}\left({ }^{t} \bar{z}-z\right)-w^{t} \bar{w} \in H^{+}(m-n, C)\right\}$.
(iii) The case $V=H^{+}(m, K)(m \geqq 2)$. Let $r(t)$ be an N-valued nondecreasing function on $[1, s]$ such that $r(s) \leqq 2 m$. And let $W=\left\{\left(u_{k t}\right)\right.$ $\in M(2 m, s, C) ; u_{k t}=0$ for $\left.k>r(t)\right\}$. Define a V-hermitian form F on W by $F(u, v)=1 / 2\left(u^{t} \bar{v}+J \bar{v}^{t} u^{t} J\right)$.

Theorem 12. Let D be the Siegel domain associated with V and F.
(1) If $r(s)<2 m-1$. Let $n=\left[\frac{r(s)+1}{2}\right]$. Then $\operatorname{dim} \mathfrak{g}^{1}=0$, $\operatorname{dim} \mathfrak{g}^{2}$
$=(m-n)(2 m-2 n-1)$ and S is of the first kind associated with the cone $H^{+}(m-n, \boldsymbol{K})$.
(2) If $r(s)=2 m-1$. Let s^{\prime} be the integer $\left(s^{\prime}<s\right)$ such that $r\left(s^{\prime}\right)$ $<2 m-1$ and $r\left(s^{\prime}+1\right)=2 m-1$. (In the case $r(1)=2 m-1$, we put $s^{\prime}=0$.) Then $\operatorname{dim} \mathrm{g}^{1}=2\left(s-s^{\prime}\right), \operatorname{dim} \mathrm{g}^{2}=1$ and $S=\left\{(z, w) \in C^{1} \times M\left(1, s-s^{\prime}, C\right)\right.$; $\left.\operatorname{Im} z-w^{t} \bar{w}>0\right\}$.
(3) If $r(s-1)=2 m$. Then $\operatorname{dim} \mathfrak{g}^{1}=\operatorname{dim} \mathfrak{g}^{2}=0$ and $S=(0)$.
(4) If $r(s)=2 m$ and $r(s-1)<2 m$. (In the case $s=1$, we put $r(0)$ $=0$.$) \quad Let n=\left[\frac{r(s-1)+1}{2}\right]$. Then $\operatorname{dim} \mathrm{g}^{1}=4(m-n)$, $\operatorname{dim} \mathrm{g}^{2}=(m-n)$ $(2 m-2 n-1)$ and S is the domain corresponding to the cone $H^{+}(m-n, K)$ and the function $r(t)$ such that $s=1$ and $r(1)=2(m-n)$.

Remark. Proofs of Theorem 10, Theorem 11 and Theorem 12 partially use an idea due to T . Tsuji who also calculated $\operatorname{dim} \mathrm{g}^{1}$ and $\operatorname{dim} \mathfrak{g}^{2}$ of Theorem 10, Theorem 11 and special cases in Theorem 12 by using different methods in his paper [3].

References

[1] W. Kaup, Y. Matsushima, and T. Ochiai: On the automorphisms and equivalences of generalized Siegel domains. Amer. J. Math., 92, 475-497 (1970).
[2] I. I. Pyatetski-Shapiro: Geometry of Classical Domains and Theory of Automorphic Functions. Fizmatgiz, Moscow (1961) (French translation, Paris (1966)).
[3] T. Tsuji: Siegel domains over self-dual cones and their automorphisms (preprint).

