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60. Elements of Finite Order in an Ordered Semigroup
Whose Product is of Infinite Order
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We use the terminology and notation in [1] freely. By an ordered
semigroup we mean a semigroup with a simple order which is com-
patible with the semigroup operation. Let o be an element of an
ordered semigroup S. a is called positive [negative ; nonnegative ; non-
positive] if a<a? [0*<a; a<a?; a*<a]. The number of distinct powers
of a is called the order of a. The semigroup S is called nonnegatively
ordered if all elements of S are nonnegative.

In [8], we gave the property that the set of all elements of finite
order of a nonnegatively ordered semigroup S forms a subsemigroup
of S, if it is nonempty. This property does not hold in general in
ordered semigroups not necessarily nonnegatively ordered. In fact,
Kuroki [2] gave the ordered semigroup K consisting of elements
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and the ordered semigroup K’ arising from K by identifying the ele-
ments g and %, as examples of ordered semigroups in which the ele-
ments x and y are elements of finite order but the element »,=zy is an
element of infinite order.
In this paper we consider conversely and prove the following
Theorem. Let x and y be elements of finite order of an ordered
semigroup S such that x<y, xy<yx and xy is a positive element of in-
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finite order. Then the subsemigroup T generated by elements x and y
18 isomorphic to either one of ordered semigroups K and K’.

Proof. We denote by m and n the orders of elements x and v,
respectively. Since xy is positive, we have xy <axyaxy and so

(1) x<zxyx and y<yxy.
Hence y<yxy<y® and so
(2) y is positive.

If x were nonnegative, then by [8] Lemma 4.7, £y would be an element
of finite order, contradicting the assumption. Hence

(3) x is negative.
Put e=2™ and f=y". Then clearly
(4) e and f are idempotents.

For every natural number ¢, we have x(yx)y = (xy)* ' < (xy)*?=x(yx)**'y
and so (yx)!<(yx)**!. Hence

(5) yx 18 o positive element of infinite order.

By way of contradiction, we assume that y<(yx)* for some natural
number 7. Then y<(yx)'<y* and so ¥ and yz lie in the same archi-
medean class. This contradicts [6] Theorem 3, since v is an element
of finite order and by (5) yx is an element of infinite order. Hence
(6) (yx)t<<y  for every natural number 1.

By (1) we have y<y(xy) <y(yx)=y'x. Hence f=y"<y " 'a<y < f"*
=f. Hence f=y""'c=fx. Also fy=y""'=f. Hence

(7) Jw=f  for every weT.
By () (wf)=wfwf=wf. Hence
(8) wf s an idempotent for every we T.

By [4] Corollary of Lemma 1, the set of idempotents of S forms a sub-
semigroup of S, which we denote by . By way of contradiction we
assume that yx<yef. Then by (8) yef is an idempotent and so (yx)™"**
<(yef)™*+'=yef. On the other hand, by (7) and (4) yef=vyefx
=yxmy™rr<y(xy)™r=(yx)™*!, Hence we have yef=(yx)""*. But
this is a contradiction, since by (5) yx is an element of infinite order
and by (8) yef is an idempotent. Hence we have yef <yx and so ef
<zx. Sincee,fc E,wehaveefec E. Hence e=am=a""'<a™y=ey<ey"
=ef=(ef)"<axm=e and so ey=e. Also ex=a""'=z™=e. Hence

(9) ew=e for every weT.

By (7) and (9) ef=e and fe=f and so e.Lf in the semigroup E. Also
by (@) and (8) e=a"<x<y<y"=f. Hence by [8] Lemma 1.13 and its
dual we have

10) m=n=2.
By (1) y<yxy<yxy’=yxf. Hence f=y'<(yxf)l=yxf <y’ f=f and so
an yaf=r.

By (6) zye=zyr’<axyr<axy. But by (9) xye is an idempotent and by
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assumption ay is an element of infinite order. Hence xy>aye=zyey

by (9). Therefore xye<x. Hence e=z’e<xye=(xye)*<z*=e and 80

12) rye=e.

Since zy and yx are elements of infinite order, we have (xy)txy=(xy)‘+*

<(zy)ti=(xy) 2y and Wr)yx=Yx) <(yx)**=(yx)**'yx. Hence

(wyie<(zy)*'z and (yo)y<(yx)**'y

13) .
for every natural number i.

By (12) and (1) we have (xy)'x*=(zy)le=e<z<zyx. Hence

14) (xy)ir<axy for every natural number i.
By (5) and (7) we have (yx)'yr=@wx)!'"'<f=fx. Hence
(15) (yx)'y<f  for every natural number i.

Put Z=ye. Then by (9) h is an idempotent. Also z(xf)=ef=e<wy
and so vf<y. Hence zf=xfe<ye. Thus
(16) g<h.
Put u;=(xy)'z, r,=(@y)!, s,=@wx)* and v,=(yx)’y. Now it is easy to
check the conclusion of the theorem.

Remark. It is easily seen that four idempotents e, f, g and & lie
in the same _[-class in the semigroup E and {e, g} and {h, f} are con-
secutive pairs of elements on the _-class.
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