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(Comm. by Kunihiko KODAIRA, M. J. A., Sept. 12, 1974)

This is a continuation of our previous notes [1],[2]. We employ
the same notation and the same terminology as in them. We shall
outline our main results. Details will be published elsewhere.

1. Polarized varieties with 4=0. Given a pair (x, ¥) of points on
a projective space P, we denote by [,,, the line which passes through
the points # and y. Given a pair (X, Y) of subsets of P, we denote by
X*Y the subset (U x4 exxr,os5piz,,) UXUY of P.

Theorem 1. i) Let (V,F) be a polarized variety with 4(V,F)=0.
Then V is normal and F is very ample.

ii) Let p: V—P" be the embedding associated with F, and let S
be the set of singular points of V. Then S is a linear subspace of P¥.

iii) Let L be a linear subspace of PY such that dim L+dim S=N
—1land LNS=0. Put V,=VNL. Then V, is non-singular, 4(V,, F)
=0 and V=V *8.

Remark. By this theorem the classification of polarized varieties
with 4=0 is reduced to that of non-singular ones. Recall that an
enumeration of such polarized manifolds has already been given in
[1].

2. Families of polarized varieties with 4=0. Theorem 2. Let
7n: CY—T be a proper, flat morphism from a variety V to another
variety T, which may not be compact. Suppose that for every teT
the fiber V,=="(t) is irreducible and reduced. Let F be a line bundle
on CY which s relatively ample tox. Suppose that AV, F)=4(V,, Fy)
=0 for some 0 T. Then AV,,F,)=0 for any teT.

Corollary 2.1. Suppose in addition that d(Vy, Fy)=1. Then CV
is a P*-bundle over T.

Corollary 2.2. Suppose in addition that d(V,, Fy)=2. Then there
exists an embedding CV—P where P is a P**-bundle over T. More-
over C1/ is a divisor on P and V, is a quadric in P,=P"*' which is the
fiber of P—T over teT.

Corollary 2.3. Suppose in addition that d(V,, Fy)=3, that V, is
non-singular and that the canonical bundle of V, is a restriction of a
line bundle on CI). Then every fiber V, is non-singular. Moreover,
except the case in which G/ is a P*-bundle over T, there exists a P'-
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bundle 9 over T such that ) is a P*~*-bundle over I¥/.

3. Certain polarized manifolds with 4=1, d=1. Lemma. Let
(V,F) be a polarized variety with dim V=1, d(V,F)=2, A4V,F)=1.
Then Bs|F|=0 and the morphism associated with |F|makes V a two-
sheeted branched covering of P.

Let F' be a line bundle on a manifold M and let B be a non-singular
member of |kF'| where k is an integer, k=2. Then there exists a sub-
manifold N of F such that the bundle mapping F—M makes N a k-
sheeted branched covering of M with branch locus B. Such a manifold
N is determined uniquely by the quadruple (M, k, B, F)) up to isomor-
phism. (See [4].) We denote N by R 5 (M). We write Rz(M) for
R, 5 (M) if there is no danger of confusion.

Theorem 3. i) Let (M,F) be a polarized manifold with A(M, F)
=1, dM,F)=1, dim M=n and g(M,F)<2. Then there exists a vector
bundle E on P! of rank 2 and a non-singular divisor B on P=P(E*)
such that Q,(M)=Rz(P) where p is the base point of |F| (see [1],
Proposition F).

ii) Let H and I denote the hyperplane bundle and trivial bundle
of P*! respectively and put L= — L(E*).

a) Suppose that g(M,F)=1, then E=1®2H, B=B,+B,, B,
e¢|L—2H|, B,¢|3L]|.

b) When g(M,F)=2, one of the following cases occurs:

b-0) E=I®I, B is connected and B ¢|6L+2H|,

b-1) E=I®H, B is connected and B < |6L|,

b-2) E=I®2H, B=B,+B,, B,¢|L—2H|, B,¢|5L]|.

When dim M =4, b-2) is the case.

Corollary. HYM,Oy)=0 if dim M =2.

Remark. A polarized surface of the above type b) is a rational
surface or a blowing-up of a K3-surface or a surface of general type
according as it is of type b-0), b-1) or b-2).
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