140. Double Centralizers of Torsionless Modules^{*}

By Yasutaka Suzuki

Department of Mathematics, Yamagata University

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1974)

In this note, we make the assumption that a ring has an identity element and modules are unital. For a left *R*-module $_{R}M$ where *R* is a ring, $D = \operatorname{End}_{R}(_{R}M)$ is an *R*-endomorphism ring of $_{R}M$ operating on the side opposite to the scalars. Then $_{R}M$ is considered as an (R, D)bimodule. A *D*-endomorphism ring $Q = \operatorname{End}_{D}(M_{D})$ of M_{D} is called a double centralizer of $_{R}M$.

Definition. Let $_{R}M$ and $_{R}U$ be left *R*-modules, $_{R}M$ is said to be $_{R}U$ -torsionless in case for each non-zero element *m* of $_{R}M$, there exists an *R*-homomorphism ϕ of $_{R}M$ into $_{R}U$ such that $(m)\phi \neq 0$.

We say that a left *R*-module $_{R}M$ is torsionless if $_{R}M$ is $_{R}R$ -torsionless and $_{R}N$ is faithful if $_{R}R$ is $_{R}N$ -torsionless. Let *Q* be a double centralizer of a faithful left *R*-module $_{R}M$, then there exists a canonical ring monomorphism of *R* into *Q*, written as $R \subseteq Q$. A faithful left *R*-module $_{R}M$ is said to have the double centralizer property if R=Q, where *Q* is a double centralizer of $_{R}M$.

Definition. A ring R is left QF-1 if every faithful left R-module has the double centralizer property.

QF-1 rings were first described by R. M. Thrall (1948 [4]) and have been examined by many authors. It was proved that the double centralizer of a faithful torsionless left *R*-module is a rational extension of R_R . Furthermore the double centralizer of a dominant left *R*-module is a maximal right quotient ring of *R* (see T. Kato [1] and H. Tachikawa [3]). In the section 1, the next theorem is proved.

Theorem. Let R be a ring with minimum condition and U be the intersection of all left faithful two-sided ideals of R. Then U is also a left faithful two-sided ideal of R and the double centralizer of $_{R}U$ is a maximal right quotient ring of R.

In the section 2, we shall prove that for a given faithful left *R*-module $_{R}M$, $_{R}M$ has the double centralizer property if and only if $_{K}Ke$ has the double centralizer property, where

 $K = \begin{pmatrix} R & M \\ \operatorname{Hom}_{R}(_{R}M, _{R}R) & \operatorname{End}_{R}(_{R}M) \end{pmatrix} \text{ and } e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in K.$

The author would like to express his gratitude to Prof. H. Tachikawa and Dr. T. Kato for useful suggestions and observations.

⁽⁾ Dedicated to professor Kiiti Morita on his 60th birthday.

1. We shall first prove the next theorem which is similar to K. Morita's result [2, Theorem 1.1.].

Theorem 1. Let $_{R}M$ and $_{R}U$ be left R-modules. If the following conditions are satisfied:

(1) There exists the following R-exact sequence:

$$\oplus_{R}M \rightarrow_{R}U \rightarrow 0$$
,

(2) If $\sum m_i \phi_i = 0$, $m_i \in {}_R M$, $\phi_i \in \operatorname{Hom}_R({}_R M, {}_R U)$, then $\sum (qm_i)\phi_i = 0$ for any $q \in Q$,

(3) For each non-zero element q of Q, there exist $m \in {}_{\mathbb{R}}M$ and $\phi \in \operatorname{Hom}_{\mathbb{R}}({}_{\mathbb{R}}M, {}_{\mathbb{R}}U)$ such that $(qm)\phi \neq 0$,

then we have $Q \subseteq \overline{Q}$ where Q and \overline{Q} are double centralizers of _RM and _RU respectively.

Proof. For any $q \in Q$, we define \bar{q} as $\bar{q}(\sum m_i \phi_i) = \sum (qm_i)\phi_i$. Then the mapping: $q \to \bar{q}$ is well-defined by (2). An element \bar{q} is contained in \bar{Q} since

 $\bar{q}((\sum m_i\phi_i)d) = \bar{q}(\sum m_i\phi_id) = \sum (qm_i)\phi_id = (\sum (qm_i)\phi_i)d = (\bar{q}(\sum m_i\phi_i))d$ for any $d \in \operatorname{End}_R(_RU)$. And this mapping: $q \to \bar{q}$ is a ring monomorphism of Q into \bar{Q} by (3).

Lemma 2. If $_{R}U$ is $_{R}M$ -torsionless, then the condition (2) of Theorem 1 is satisfied.

Proof (c.f. T. Kato [1]). If $\sum (qm_i)\phi_i \neq 0$, $q \in Q$, $m_i \in {}_RM$, $\phi_i \in \operatorname{Hom}_R({}_RM, {}_RU)$, then there exists $d \in \operatorname{Hom}_R({}_RU, {}_RM)$ such that $(\sum (qm_i)\phi_i)d\neq 0$ since ${}_RU$ is ${}_RM$ -torsionless. And

 $(\sum (qm_i)\phi_i)d = \sum (qm_i)\phi_i d = \sum q(m_i\phi_i d)$

by $q \in Q = \operatorname{Hom}_{D}(M_{D}, M_{D})$ and $\phi_{i}d \in D = \operatorname{Hom}_{R}(_{R}M, _{R}M)$. Further $\sum q(m_{i}\phi_{i}d) = q(\sum (m_{i}\phi_{i})d) = q((\sum m_{i}\phi_{i})d) \neq 0.$

Then we have $\sum m_i \phi_i \neq 0$.

Since the condition (3) of Theorem 1 is satisfied if $_{R}M$ is $_{R}U$ -torsionless, we have the following.

Lemma 3. Let $_{R}M$ and $_{R}U$ be left R-modules. If the following conditions are satisfied:

(1) There exists the following R-exact sequence:

$$\oplus_{R} M \rightarrow_{R} U \rightarrow 0,$$

(2) $_{R}U$ is $_{R}M$ -torsionless,

(3) $_{R}M$ is $_{R}U$ -torsionless,

then we have $Q \subseteq \overline{Q}$ where Q and \overline{Q} are double centralizers of _RM and _RU respectively.

Lemma 4. Let A and B be left faithful two-sided ideals of a ring R. Then $A \cap B$ is also a left faithful two-sided ideal of R.

Proof. Clearly $AB = \{\sum a_i b_i | a_i \in A, b_i \in B\}$ is a two-sided ideal contained in a two-sided ideal $A \cap B$. For each non-zero element r of R, there exists $a \in A$ such that $ra \neq 0$ since A is left faithful. Similarly

for $ra \neq 0$, there exists $b \in B$ such that $(ra)b \neq 0$ since B is left faithful. By $r(ab) \neq 0$, $ab \in AB$, AB is left faithful. Hence $A \cap B$ is also left faithful.

Definition. For a left *R*-module $_{R}M$, the sum of all *R*-homomorphic images of $_{R}M$ into $_{R}R$ is called a trace ideal of $_{R}M$, written as Tr ($_{R}M$).

Theorem 5. Let R be a ring with minimum condition and U be the intersection of all left faithful two-sided ideals of R. Then U is also a left faithful two-sided ideal of R and the double centralizer of _RU is a maximal right quotient ring of R.

Proof. If R is a ring with minimum condition, then U is a left faithful two-sided ideal of R because of Lemma 4. For any faithful torsionless left R-module $_{R}M$, let Tr ($_{R}M$) be a trace ideal of $_{R}M$ and Q, Q' be double centralizers of $_{R}M, _{R}Tr (_{R}M)$ respectively. By Lemma 3, we have $Q \subseteq Q'$. Since Tr ($_{R}M$)U is also a left faithful two-sided ideal contained in U, then Tr ($_{R}M$)U = U. In this case, Q' is contained in the double centralizer \overline{Q} of $_{R}U$ by Lemma 3. Thus we have $Q \subseteq \overline{Q}$. This ring \overline{Q} is a maximal right quotient ring of R since R has a dominant left R-module (see T. Kato [1]).

Theorem 6. Let R be a left cogenerator ring. Then the following statements are equivalent:

(1) R is a left QF-1 ring.

(2) Every faithful left ideal of R has the double centralizer property.

(3) Every left faithful two-sided ideal of R has the double centralizer property.

(4) Every left faithful trace ideal of R has the double centralizer property.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ is clear. $(4) \Rightarrow (1)$. For any faithful left *R*-module $_{R}M$, let Tr $(_{R}M)$ be a trace ideal of $_{R}M$ and Q, \overline{Q} be double centralizers of $_{R}M$, $_{R}$ Tr $(_{R}M)$ respectively. By Lemma 3, we have $Q \subseteq \overline{Q}$ and (4) implies Q = R.

2. In this section, let $_{R}M$ be a faithful left *R*-module, $D = \operatorname{End}_{R}(_{R}M)$ and $Q = \operatorname{End}_{D}(M_{D})$. It is easily shown that the canonical mapping

$$\begin{split} \eta \colon \operatorname{Hom}_{R}\left({}_{R}M, {}_{R}R\right) &\to \operatorname{Hom}_{D}\left(M_{D}, D_{D}\right) \\ \text{is a } (D, R) \text{-monomorphism and the canonical mapping} \\ \rho \colon \operatorname{Hom}_{D}\left(M_{D}, D_{D}\right) &\to \operatorname{Hom}_{Q}\left({}_{Q}M, {}_{Q}Q\right) \end{split}$$

is a (D, Q)-isomorphism. We define a ring K as

$$K = \begin{pmatrix} R & M \\ \operatorname{Hom}_{R}(_{R}M, _{R}R) & D \end{pmatrix}$$
$$= \left\{ \begin{pmatrix} r & m \\ \phi & d \end{pmatrix} | r \in R, m \in M, \phi \in \operatorname{Hom}_{R}(_{R}M, _{R}R), d \in D \right\}.$$

No. 8]

In this ring K, for $m \in M$ and $\phi \in \text{Hom}_R(_RM, _RR)$, let $m\phi \in R$ be as usual but ϕm means $(\eta\phi)m \in D$.

Lemma 7. Let $_{R}M$, D, Q and K be as above. If $_{R}M$ is faithful, then $_{K}Ke$ is faithful, where

$$e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in K.$$

Lemma 8. Let $_{R}M$, D, Q, K and $e \in K$ be as above. Then the double centralizer of $_{K}Ke$ is a ring

$$\begin{pmatrix} Q & M \\ \operatorname{Hom}_D(M_D, D_D) & D \end{pmatrix}$$
.

Finally we describe our main theorem which is thought to be useful in solving later problems.

Theorem 9. Let $_{\mathbb{R}}M$, D, Q, K and $e \in K$ be as above. Then $_{\mathbb{R}}M$ has the double centralizer property if and only if $_{\mathbb{K}}Ke$ has the double centralizer property.

References

- [1] T. Kato: U-dominant dimension and U-localization (unpublished).
- [2] K. Morita: On algebras for which every faithful representation is its own second commutator. Math. Z., 69, 429-434 (1958).
- [3] H. Tachikawa: On left QF-3 rings. Pacific J. Math., 32, 255-268 (1970).
- [4] R. M. Thrall: Some generalizations of quasi-Frobenius algebras. Trans. Amer. Math. Soc., 64, 173-183 (1948).