135. Direct Sum of Strongly Regular Rings and Zero Rings

By Steve LIGH^{*)} and Yuzo UTUMI^{**)}

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

1. Introduction. In [5] F. Szász investigated a class of rings, called P_1 -rings, which coincides with the class of strongly regular rings in the absence of nilpotent elements. He showed that any P_1 -ring is a subdirect sum of some zero rings of additive rank one and some division rings. In this paper, we shall give several characterizations of P_1 -rings, in particular, it will be shown that any P_1 -ring is a direct sum of a strongly regular ring and a zero ring. We also explore other generalizations of strongly regular rings and apply them to some commutatively theorems.

2. P_1 -rings. Definition 1. A ring R is called a P_1 -ring if aR = aRa for each a in R.

We summarize here some of the results in [5] about P_1 -rings.

Theorem 0. Let R be a P_1 -ring. Then

(i) $aR = aRa^n$ for any positive integer n and NR = 0 where N denotes the set of nilpotent elements of R.

(ii) R is strongly regular if and only if R has no nonzero nilpotent elements.

Now we give a characterization of P_1 -rings, but first a lemma is needed.

Lemma 1. Let R be a P_1 -ring. Then ab=0 implies ba=0 for any a, b in R.

Proof. Suppose ab=0. Then baba=0 implies that ba is in N and from (i) of Theorem 0, baR=0. R is P_1 implies that ba=brb for some r in R. Hence bar=brbr=0. Thus br is in N and brR=0. Consequently ba=brb=0.

Theorem 1. A ring R is a P_1 -ring if and only if

- (i) $N \subseteq C$, where C denotes the center of R,
- (ii) $E \subseteq C$, where E denotes the set of idempotents,
- (iii) NR=0,

(iv) R/N is strongly regular.

Proof. Suppose R is a P_1 -ring. If x is in N, then xR=0. By Lemma 1, Rx=0 and hence $N\subseteq C$. Now let $e=e^2$ be in R. Then for any x in R, e(ex-x)=0 implies that (ex-x)e=0 and exe=xe. Sim-

^{*)} Department of Mathematics, University of Southwestern Louisiana, Lafayette, Louisiana 70501, U. S. A.

^{**)} Department of Mathematics, University of Osaka Prefecture, Osaka.

ilarly, exe=ex. This proves (ii). The fact that NR=0 and R/N is strongly regular follows from (i) and (ii) of Theorem 0 respectively.

Conversely, we need to show that aR = aRa for any a in R. Clearly $aRa \subseteq aR$. Since R/N is strongly regular, $(a+N)=(a+N)^2(b+N)$ for some b in R. But a strongly regular ring is a P_1 -ring, so we have that (a+N)(ab+N)=(a+N)(w+N)(a+N) for some w in R. Hence (a-awa) is in N. From (i) and (iii), w(a-awa)=0. Thus wa is an idempotent and is in C. Now let r be in R. Then (a-awa)r=0 implies that ar=awar=arwa. Hence ar is in aRa and it follows that aR=aRa. Thus R is a P_1 -ring.

The next result gives a complete structure of P_1 -rings.

Theorem 2. A ring R is P_1 if and only if it is a direct sum of a strongly regular ring and a zero ring.

Proof. The if part is trivial. Suppose R is a P_1 -ring. We wish to show that $R = R^2 \oplus N$. Suppose $\sum x_i y_i$ is in $R^2 \cap N$. Since R/N is strongly regular (hence regular), there is $(z+N)=(z+N)^2$ in R/N such that $(x_i+N)(z+N)=(x_i+N)$ and $x_i=x_iz+n_i$, $n_i \in N$ for each *i*. Since $NR=0, z^2$ is idempotent and $x_iz=x_iz^2$. Thus $\sum x_iy_i=\sum (x_iz+n_i)y_i$ $=\sum x_izy_i=\sum x_iz^2y_i=\sum (x_iy_i)z^2=0$. Thus $N \cap R^2=0$. Also for each x in R, there is a y in R such that $(x-x^2y)$ is in N. Hence $R=R^2+N$. From (iii) of Theorem 1, $N^2=0$. It remains to show that R^2 is strongly regular. Since $aR^2=aRaR=aRaRa=aR^2a$, R^2 is a P_1 -ring with no nilpotent elements and thus is strongly regular.

Remark. From Theorem 2 it follows that any P_1 -ring R with d.c.c. on right ideals is a direct sum of division rings and a zero ring. In particular, if R is finite, R is a commutative ring.

Theorem 3. For an arbitrary ring R the following are equivalent:

- (2) R is a P_1 -ring.
- (3) $aR = Ra^2$ for any a in R.
- (4) $aR \subseteq Ra^2$ for any a in R and any idempotent of R is central.

Proof. (1) implies (2) follows from Theorem 2. (2) implies (3): Since $aR = aRa^2$ for each a in R, $aR \subseteq Ra^2$. Let r be in R. Since R/N is strongly regular, there is an x in R such that $(a^2 - a^4x)$ is in N. By (ii) of Theorem 1 and Lemma 1, $(a^2 - a^4x)r = 0 = a^2(r - a^2xr) = (r - a^2xr)a^2$. Hence ra^2 is in aR and $aR = Ra^2$.

(3) implies (4): For $e^2 = e$, eR = Re. Hence if a is in R, ea = xe implies eae = xe = ea. Similarly, eae = ae. Thus e is central.

(4) implies (1): Since $aR^2 \subseteq Ra^2R$, it follows that for any $n \ge 1$, $Ra^nR \subseteq Ra^{2n} \subseteq Ra^{2n-1}R$, and so $aR^2 \subseteq Ra^2R \subseteq Ra^3R \subseteq Ra^5R \cdots$. This shows that $aR^2 = 0$ for any nilpotent *a*. Thus the set of nilpotent elements of *R* forms an ideal *N* of *R*. Now $a^2 = ba^2$ for some *b*. Hence (a-ba)a

⁽¹⁾ R is a direct sum of a strongly regular ring and a zero ring.

=0 and (a-ab)a=a(a-ba). A quick calculation shows that $(a-ab)^2$ is in N and hence (a-ab) is in N. Since $aR \subseteq Ra^2$, $ab = xa^2$ for some x in R. We see that $(a-xa^2)$ is in N and hence R/N is strongly regular. Since $aR^3 \subseteq Ra^2R^2 \subseteq R^2a^4R \subseteq R^3a^8 \subseteq R^3a^2$, it follows that R^3 satisfies the assumption (4). Suppose $\sum x_iy_iz_i$ is a nilpotent element in R^3 . Since R/N is regular, $x_i = x_ie \pmod{N}$ for some $e^2 = e$. Hence $(x_i - x_ie)R^2 = 0$ and $x_iy_iz_i = x_iey_iz_i$. Since any idempotent is central, we see that $\sum x_iy_iz_i = \sum (x_iy_iz_i)e^2 = 0$. Thus R^3 has no nonzero nilpotent elements, and is strongly regular from the argument above. It remains to show that $R = R^3 + N$ and that N is a zero ring. The fact that R/N is strongly regular implies that for each a in R, there is a b in R such that $(a-a^2b)$ is in N. Hence $a \in R^3 + N$ and $R = R^3 \oplus N$. Since N is a direct summand of R, N satisfies (4) and $aN \subseteq Na^2 \subseteq NR^2 = 0$ for any a in N. Thus N is a zero ring.

3. Generalizations. In this section we consider other classes of rings having the property that ab=0 implies ba=0. By Lemma 1, a P_1 -ring has this property. Now we adopt the following definition.

Definition 2. Let R be a ring. Then R is called

(a) a P_2 -ring if for each x, y in R, there is a positive integer n = n(x, y) > 1 and an element z = z(x, y) in the center of R, such that $(xy-yx) = (xy-yx)^n z$.

(b) a P_3 -ring if every homomorphic image R' of R has the property that ab=0 implies ba=0 for each a, b in R'.

(c) a P_4 -ring if for each x in R, $A(x) = \{y \in R : xy = 0\}$ is an ideal.

Lemma 2. Let R be a P_i (i=1,2) ring. Then R is a P_3 -ring and any P_3 -ring is a P_4 -ring.

Proof. A P_1 -ring is a P_3 -ring by Lemma 1. Any P_2 -ring in a P_3 -ring is given in the proof of Theorem 1 in [1] with the obvious modification. Clearly a P_3 -ring is a P_4 -ring.

The class of P_2 -rings was studied in [3] and [4]. In fact it was shown in [3] that a P_2 -ring is a subdirect sum of commutative rings and division rings. We studied P_4 -rings with d.c.c. in [2]. Now we consider P_3 -rings and apply it to a commutativity theorem of Herstein.

Theorem 4. Let R be a P_3 -ring. Then R is a subdirect sum of subdirectly irreducible rings R_i where each R_i is one of the following types:

- (A) R_i is a zero ring,
- (B) R_i has no zero divisors,
- (C) Any nonzero idempotent in R_i is the identity.

Proof. Since any ring R is a subdirect sum of subdirectly irreducible rings R_i , it follows that ab=0 implies ba=0 for each a, b in R_i .

Case 1. R_i has the zero multiplication. This is type (A).

Case 2. R_i has no proper ideals. Since for each x in R_i , A(x) is an ideal, it follows that R_i has no zero divisors. This is type (B).

Case 3. R_i has proper ideals. If $0 \neq e = e^2$ is in R_i , then e is the identity. For if not, then eR and A(e) are ideals and $eR \cap A(e) = 0$. Since R_i is subdirectly irreducible, R_i is of type (C).

From Theorem 4 one can obtain the following corollaries whose proofs we shall omit.

Corollary 1 ([3]). Any P_2 -ring is a subdirect sum of commutative rings and division rings.

Corollary 2 (Herstein). R is a commutative ring if and only if for each x, y in R, there is an integer n=n(x, y)>1, such that (xy-yx) $=(xy-yx)^n$.

Corollary 3 ([4, Theorem 5]). If R is a P_2 -ring with n=2, then R is commutative.

References

- H. E. Bell: Certain near rings are rings. J. London Math. Soc., 4(2), 264-270 (1971).
- [2] Steve Ligh: A special class of near rings. J. Austral. Math. Soc. (to appear).
- [3] ——: The structure of certain classes of rings and near rings. J. London Math. Soc. (to appear).
- [4] M. S. Putcha, R. S. Wilson, and A. Yaqub: Structure of rings satisfying certain identities on commutators. Proc. Amer. Math. Soc., 32, 57-62 (1972).
- [5] F. Szász: Some generalizations of strongly regular rings. I. Math. Japonicae, 17, 115-118 (1972).