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127. On Schwarz’s Lemma for zlu-+-c(x)u--O

By Kyfiya MASUDA
Department of Mathematics, University of Tokyo

(Comm. by K6saku YOSlDA, IVl. J. A., Oct. 12, 1974)

1. Introduction. The famous Schwarz’s lemma in the complex
function theory states that if f(z) is holomorphic in zl 1, and if f(0)
=0 (or If(z) l<_const. zl), then the estimate" If(z) l<_lzl max

I1 --1

holds for zll. Many theorems in the complex function theory have
been generalized with great success to the case of harmonic functions,
or more generally, solutions of the second order elliptic differential
equations with variable coefficients. The Schwarz’s lemma, however,
does not seem to have been generalized previously even to the case of
harmonic functions. The main purpose of the present paper is to
generalize this lemma to solutions of the equations of the form"
+c(x)u-O. As corollaries of the generalized Schwarz’s lemma, we
can obtain the generalizations of the Hadamard three-circles theorem
[which states; if f(z) is holomorphic in IzlR, then log maxlf(re*)l

is a convex function of log r(OrKR)], and the Liouville’s theorem
[which states; if an entire function f(z) satisfies 0(Izla) as Izl--.c (k;
non-negative integer), then f(z) is a polynomial of at most degree k].
The extension of the results below to the case of the general second
order elliptic equations with variable coefficients will be published else-
where.

2. Notations. R denotes the n-dimensional real Euclidean
space, and C the n-dimensional complex Euclidean space. We denote
the inner product and the norm in C (R) by (.,. and I" I. We set
S={x e R; 0<Ix[KR}. Let L(X) be the LZ-space of C-valued func-
tions defined on the unit surface Y={x e R; Ixl=l}. Then Lz(X) is the
Hilbert space with the usual inner product (., .) and the norm I1"11"
(u, v)--[ (u(), v()de and luIl=(u, u)/ where da denotes the surface

d

area element on the unit surface 2. H(27) denotes the set of all func-
tions in L(X) whose distribution derivatives up to order 2 belong to
Lz(X). Now putting u(r, )=u(x) (r= Ixl; =x/lxl), we shall then regard
a function u(x) defined in the sphere IxlKR as an L(X)-valued function
of r, and simply write u(r) for u(r, ) (or u(x)). Finally, for multi-
index =(, ...,) and x=(x, ...,x) eR, we set x"=xl’... and
D.=O.+...+./Ox,. .Oxen.
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:. Results. Let us consider the equation o the 2orm
( 1 ) Au+ c(x)u-O (x Sa)
where z/-(/3x)+... + (3/3x), u(x) is an m-vector function o x and
e(x) is an (m m) matrix-valued unction o x. Concerning c(x), we
shall make the ollowing assumption throughout the present paper.

Assumption on c(x). The (m m) matrix-valued function c(x) is
hermitean for each fixed x in Sa, is continuously dierentiable with
respect to x Sa, and satisfies the conditions"
2 ) <e(x), > 0 (x e S, e C)

and

)3 ) [x.3 x]c(x)+ 2c(x) 5, _<0 (x e Sa, 5 e C)

Now we can state the results e the present paper.
Theorem 1 (Schwarz’s lemma). Let the above assumption on c

be satisfied. Let u be a solution of equation (1). If u satisfies the
estimate"
( 4 ]]u(r) ]gMr (OrR)
where M is some constant and fl is some real number with --(n-2)/2
g fl, then we have

(5) u(r) U(ro)

for all r, ro with 0 r r0 R.
Theorem 2 (Hadamard’s three-spheres theorem). Let the above

assumption on c be satisfied. Let u be a solution of (1). Then log u(r)
is a convex function of log r, that is,

log u(r)] log r-log r log ]u(r)]
log r-log r

(6)
+ log r-log rl log u(r)[

log r--log r
for 0 r r r R.

This theorem was generalized to the case o general second order
elliptic equations by E. Landis [3], [4], S. Agmon [1], K. Miller [5] and
Protter-Weinberger [6], in various orms.

Theorem (Liouville’s theorem). Let R=. Let the above as-
sumption on c be satisfied. Let u be a k-times continuously dierenti-
able solution of (1) in Rn. If u satisfies [u(x)[=o([x[+9 as [x[, then
u is uniquely determined by the values D"u(o) (]a]gk) of u(x) at the
origin. In particular, if u is harmonic in R, i.e., Au=0, and if ]u(x)[

o(]x] +) asx], then u is a polynomial of at most degree k.
This theorem with k--0 and with o(x]) replaced by 0(1) has been

extended to the general second order elliptic differential equations (see,
e.g., Gilbarg-Serrin [2]), while or general k, the theorem does not
seem to the writer to have been shown previously.
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4. Proof of Theorem 1. Using the polar coordinate (r,
=x/Ixl, we shall rewrite equation (1) in the orm
( 7 ) u(r) + n-- 1 u(r) + A--vu(r) + e(r, )u(r) 0

r r
where u(r)=(d/dr)u(r), e(r,)=e(x), and A denotes the Laplace-
Beltrami operator on the unit sphere v. We note here that i we
define the domain oi //= H(X), then // becomes the non-positive sel-
adjoint operator in L(X). Changing the variable t-.t-I/r, and
putting v(t, )--t-u(t-, ) (=(n-2)/2), we see that the v satisfies

8 L[v]=_vttq-l-:-vtq-A(t)v--O, tT (T--1/R)

where
__1A (n-2) + c(t-, )A(t)=
t 4t

Let us define the domain D(A(t)) of A(t) by D(A(t))=H2(X). Then we
have"

Lemma 1. We have
(i) for each t T, A(t) is a closed symmetric operator in L(X)

with
( 9 ) (A(t)y, y)<_ 0 (for all y in D(A(t)))

(ii) the estimate

(10) ((d/ dt)n(t)y, y) >_ (n(t)y, y)

holds for all t T and y in D(A(t)).
Proof. Since A is non-positive and symmetric, and since (c5, 5}

<_0, (i)easily follows. Differentiating A(t)y (y e H2(X)) with respect
to t, we have (d/dt)A(t)y= -2t-A(t)y+ t-{t(/t)c(t-, )-2c(t-, )}y.
Since, by the assumption on c, (t(3/3t)c(t-, )y-2c(t-, )y, y}>_0, we

have ((d/dt)A(t)y, y} >_ (A(t)y, y}. Integrating with respect to

over X, we have (10). This completes the proof of the lemma.
We now define

m(t)= lvt]l+(A(t)v, v).
Then we have the following two cases" (I) m(to)O for some toT;
(II) m(t)<_O or all t T. (a) the case (I). Let t be the supremum
for all t such that re(s)0 or all s with to<_s t. By the continuity
in t of re(t), we then have t0 t. Writing (d/dt)A(t)y- A(t)y, (d/dt)v
=v’, and differentiating re(t) in t, we find

re(t)’=2 Re (v", v’) + (A(t)v, v) + 2 Re (A(t)v, v’)

2 Re (L[v], v’)--- I+ (iI(t)v v)

> 2 { v’ + (A(t)v, v} 2m(t) [by (8) and (10)].
t t
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Hence (tm(t))’:>O, and so, by the integration,
(11) re(t)

_
(to t)m(to), (to < t< t;1).

If t< c, then we have m(t)>0 and hence re(t)>0 for some interval
[t, t + a) (a>0)" a contradiction to the definition of t. Hence t must
be the infinity, and (11) holds for all t t0. Now, by direct calculation,

(d/ds)(v, v)=2 Re (L[v], v)-- Re (v’, v)-2(A(s)v, v)+ 2
8

(12) Re (v’, v)+ 2m(s)--4(A(s)v, v)
8

k Re (v’, v) + 2(t0/s)m(to) [by (9) and (11)].
s

Multiplying both sides of (12) by (t--s)(S--to), and integrating with
respect to s over the interval (t0, t), we have

(t-- to) Iv(t)112 + (t-- t0) V(to) 2- 2 v(s)
to

d(-- s)(s-- to) v(s) ds

_I> v(s) ds+ 2(t--to)tm(to)[log (t/to) 2]

rom which it ollows that
(t-- to) v(t) [ + (t-- to) V(to) 2(t-- to)tm(to)[log (t/ to) 2].

Hence, dividing both sides by t--to, and expressing this inequality in
terms of the original variable r and the unction u(r) (=r-"v(r-)), we
get
(13) ][u(r)[[+(ro/r)" ]]U(ro)2r-"r;m(to)[log (ro/r)-2]
where r0= 1/t0. Since by the assumption, u(r)=O(r-+) as r0, we
see that (13) is impossible. Hence our assumption excludes the pos-
sibility o the case (I). (b) the case (II). Let t0 be any number with
V(to)O (tT). We set =sup (t; v(s)O or all s with
Setting ($)=log ]v(t), we differentiate g(t) in t. The results are"

(14) g’(t) 2 Re (v’(t), v(t)) /[ v(t).
2(15) g’(t)= liv(t)li.(Re (v’(t), v(t))+lv’(t)[[-2[Re (v’(t),

By (8), Re (v’, v)=--t- Re (v’, v)--(A(t)v, v). On the other hand, the
condition that m(t) g 0 implies that --(A(t)v, v) ]]v’[. Hence, Re (v", v)

v’ [-- t- Re (v’, v). Hence, we have

g’(t) 2 ..(2 []v’]--t- Re (v’, v)--2[Re (v’, v)]/]v]}
(16) []v

--t-g’(t) [by (14) and the Schwarz inequality]

and so (t’(t))’O. Integrating with respect to t, we set
(17) g(t) g(to) + tog’(to) log (t/to),
This implies that if t, rhea g(t) , and so v(t)0. Hence
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v(t):/:0 for some interval [t,t+) (; some positive constant);
contradiction to the definition of t. Hence t must be the infinity.
This implies" if V(to) :/: O, then v(t) :/: 0 for t> to and (17) holds for
all t>to. If Ilu(r)ll_Mra(-(n--2)/2<_,M;positive constant), and
so if IIv(t)l _Mt--, then we have 2(t)_2 logM--2(a+fl) log t. By
(16), g(t0) + to*’(to) log (t/to)_2 log M--2(a+) log t. Dividing both sides
by 10g t, and letting tc, we obtain t0*’(t0)_--2a-2fl, which holds
for any to with V(to):/:0. If we fix a to(> T) such that V(to):/:0, then we
have the inequality tg’(t) <_ 2--2, t> to, since v(t) :/: 0 for all t > to.
Integrating in t, we have

log Iv(t) -- log V(to)

_
2(a + fl)(log t-- log to),

rom which it ollows that v(t)[ <_(t0/t)"/ v(t0)[l. Let us express the
results so ar obtained in terms of the original variable r
and the original unction u(r) (=r-"v(r-)). Then i2 u(ro) :/:0, then
u(r) : 0 for 0 r r0 and the estimate

u(r) <- (r/ro) U(ro)
holds. Now if it is shown that the solution u satisfies either u--0, or
u(r):O or all r in (0, R), then the proof will be completed. To see
this, we have only to show the following lemma.

Lemma 2. Let be a solution o (1). I U(ro):O for some ro
(OroR), then u(r):/:O or roareR.

Proof. We define v(t) by v(t)-t-"u(1/t) (a=(n-2)/2). We first
show that v(t) is decreasing in t. As in (12), we have

(d/dt) v(t)I1=--2t- Re (v’, v)--2(A(t)v, v)+ 2 IIv’ll
_--2t- Re (v’v) [by (9)]

and so (t(l[v(t)[l)’)’>_O. Integrating this inequality with respect to t
over (t, t), we obtain
(18) v(t) >_llv(t) I+ [s(d/ds) Itv(s) I]-_t log (t/t)
or T t t (T R-9. If (d/ds) v(t) 0 for some t then inequality
(18) shows that IIv(t)[l-c 2or t-c, which contradicts the assumption
that I]v(t)ll--t-" Ilu(t-9 I-0(1) as t-c. Hence (d/dt)[]v(t)[]_<0 or all
tT, showing that ]lv(t)ll is decreasing in t. We now suppose that
u(r*)--O or some ror*R. Then v(t*)--O (t*--l/r*). Since t*r,
and since v(t)II is decreasing in t, we see v(r) I1-0, contradicting the
assumption U(ro):0. This proves the lemma.

5. Proof of Theorem 2. Setting k(t)-log u(t-)l , and noting
that k(t)--2a log t + (t), we have, by (16),

k"(t)_ --t-k’(t).
Changing the variable t--s- log t and noting that (d/dt)= t-(d/ds),
(d/dt)--t-(d/ds+d/ds), we have s(d/ds)log ]u(e) I>_0, and so
(d/ds) log Ilu(e) I1>_0, which implies log Ilu(r)11 is a convex unction
s= log r.
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6. Proof of Theorem 3. Let ul be any solution of (1) such that
u(x)--o([x]+9 as [x[-oo, and such that D"u(O)=D"u(O) ([a[<_k). Then
w--u--u is also a solution of (1) such that w(x)-o([x]/9 as [x[-.oo,
and such that D"w(0)=0 (]a]<_k). Hence Iw(x)[_<const. Ix]+. Apply-
ing Schwarz’s lemma, we have I[w(r)llg(r/ro)+l[W(ro)ll for all v, r0
with O<r<ro. Since [w(x)[=o(r/9, the right hand side (r/ro)+ [[w(r0)
tends to zero as r0-c. Hence w(r)-O for all r0, proving the first
part of the theorem. Let u be harmonic in R. We expand u(x) at the

origin in the form" u(x)--u(x)+u2(x) where u(x)-- 1---D"u(O).x".
Then it is easy to see that u is harmonic in Rn, and that u(x)=O(]x]O
as Ixlc, D"u(O)=D"u(O) (lal<_k). Hence it ollows rom the first part
o the theorem just proved that u(x)--u(x). This completes the proof
o the theorem.
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