164. Defect Relations and Ramification

By Fumio SAKAI

Department of Mathematics, Kochi University

(Comm. by Kunihiko KODAIRA, M. J. A., Nov. 12, 1974)

In this paper we generalize the theory of ramified values in the Nevanlinna theory ([4], [7]) to the case of equidimensional holomorphic maps from C^n into projective algebraic manifolds and we prove variants of a defect relation of Carlson and Griffiths [1]. (See also [3], [9].)

1. Let W be a projective algebraic manifold of dimension n and L a line bundle on W. Iitaka [5] defined the L-dimension κ (L, W) of W, which is roughly the polynomial order of dim $H^0(W, \mathcal{O}(mL))$ as a function of m, as follows. If there is a positive integer m_0 such that dim $H^0(W, \mathcal{O}(m_0L)) > 0$, we have the following estimate:

 $\alpha m^* \leq \dim H^0(W, \mathcal{O}(mm_0L)) \leq \beta m^*,$

for large integer *m* and positive constants α , β , where κ is a non-negative integer uniquely determined by *L*. Then we define $\kappa(L, W) = \kappa$. In the other case, we put $\kappa(L, W) = -\infty$. In particular, $\kappa(L, W) = n$ if and only if

 $\limsup m^{-n} \dim H^{\scriptscriptstyle 0}(W, \mathcal{O}(mL)) \! > \! 0.$

For a divisor D on W, denote by [D] the line bundle associated with D. Define $\kappa(D, W) = \kappa([D], W)$. By $L_1 + \cdots + L_k$, we mean the tensor product $L_1 \otimes \cdots \otimes L_k$ of line bundles L_1, \cdots, L_k . Moreover we shall consider linear combinations of line bundles: $L = q_1L_1 + \cdots + q_kL_k$, with rational numbers q_1, \cdots, q_k . Define $\kappa(L, W)$ to be $\kappa(mL, W)$ for any positive integer m such that each mq_i is an integer.

2. We shall consider holomorphic maps $f: \mathbb{C}^n \to W$, and assume that f is non-degenerate, i.e., the Jacobian J_f of f does not vanish identically. Let D be an effective divisor on W. Denote by Supp (f^*D) the support of the divisor f^*D . Namely, if $f^*D = \sum_s m_s Z_s$, with Z_s irreducible, we put $\operatorname{Supp}(f^*D) = \sum_s Z_s$. Let (z_1, \dots, z_n) be holomorphic coordinates in \mathbb{C}^n , and let B[r] denote a ball of radius $r: B[r] = \{z \in \mathbb{C}^n \mid ||z|| \le r\}$, where $||z||^2 = |z_1|^2 + \dots + |z_n|^2$. For a set X in \mathbb{C}^n , let $X[r] = X \cap B[r]$. We use the following notations:

$$\psi = (2\pi)^{-1}\sqrt{-1}\partial\bar{\partial}\log||z||^2,$$

$$N(D,r) = \int_0^r \left(\int_{f^*D[t]} \psi^{n-1}\right)t^{-1}dt,$$

$$\bar{N}(D,r) = \int_0^r \left(\int_{\mathrm{Supp}(f^*D)[t]} \psi^{n-1}\right)t^{-1}dt,$$

No. 9]

$$N_{1}(r) = \int_{0}^{r} \left(\int_{(J_{f})[t]} \psi^{n-1} \right) t^{-1} dt.$$

Definition. Let L be a line bundle on W and let ω be a real (1, 1) form belonging to the Chern class $c_1(L)$. Set

$$T(L,r) = \int_0^r \left(\int_{B[\iota]} f^* \omega \wedge \psi^{n-1} \right) t^{-1} dt.$$

For a divisor D, set T(D, r) = T([D], r). For a linear combination of line bundles: $L = q_1L_1 + \cdots + q_kL_k$, set $T(L, r) = q_1T(L_1, r) + \cdots + q_kT(L_k, r)$.

Let D be an effective divisor on W. We have the following Theorem 1 (see [1], [3] for a proof).

(1)

$$N(D, r) < T(D, r) + O(1).$$
Proposition 1. If $f(\mathbf{C}^n) \cap D \neq \emptyset$, then

$$\liminf_{r \to +\infty} [T(D, r)/\log r] > 0.$$
Could be the formula much that

Corollary. If L is a line bundle such that $\kappa(L, W) \ge 1$, then (2) $\liminf [T(L, r)/\log r] > 0.$

Proposition 2. If L is a line bundle such that $\kappa(L, W) = n$, then (3) $\liminf [T(L, r)/T(D, r)] > 0.$

Proof. This follows from the fact that there is an effective divisor $Z \in |mL-D|$ for some large integer m (cf. [6], [8]).

Let $D = D_1 + \cdots + D_k$ be a divisor on W satisfying the following conditions:

(4) (i) Each D_i is non-singular,

(ii) D has only normal crossings.

By a similar method as in [1], [3], [8], we obtain

Theorem 2 (Second main theorem). Let L be a line bundle such that $\kappa(L, W) = n$, β a constant, $0 < \beta < 1$, and let K_W denote the canonical bundle of W. Then

 $\begin{array}{ll} (5) & T(D,r) - N(D,r) + N_1(r) \leq -T(K_w,r) + O(\log T(L,r)), \\ for \ r \notin E, \ where \ E \ is \ a \ union \ of \ intervals \ \subset [0,+\infty) \ such \ that \\ \int_E d(r^{\beta}) < +\infty. \end{array}$

3. Let D be a divisor on W and $f: \mathbb{C}^n \rightarrow W$ a holomorphic map. Define

(6)
$$\delta(D) = 1 - \limsup_{r \to +\infty} [N(D, r)/T(D, r)].$$
$$\Theta(D) = 1 - \limsup_{r \to +\infty} [\overline{N}(D, r)/T(D, r)].$$
$$\theta(D) = \liminf_{r \to +\infty} [(N(D, r) - \overline{N}(D, r))/T(D, r)],$$
$$\gamma_1(D) = \liminf_{r \to +\infty} [N_1(r)/T(D, r)].$$

Remark. The quantity $\delta(D)$ is called the *defect* of D and $\theta(D)$ is called the *ramification index* of D. It is easily seen that

 $0 \leq \delta(D) \leq 1, \quad 0 \leq \Theta(D) \leq 1, \quad 0 \leq \theta(D) \leq 1, \quad \delta(D) + \theta(D) \leq \Theta(D).$ If $f(\mathbf{C}^n) \cap D = \emptyset$, then $\delta(D) = 1, \quad \Theta(D) = 1$, and $\theta(D) = 0$.

Lemma 1. Let D_1, \dots, D_k be divisors on W and let $D=D_1+\dots+D_k$. Then we have

(i)
$$\sum_{i=1}^{k} \left\{ \liminf_{r \to +\infty} \left[T(D_i, r) / T(D, r) \right] \right\} \delta(D_i) \leq \delta(D),$$

(7) (ii) $\sum_{i=1}^{k} \left\{ \liminf_{r \to +\infty} \left[T(D_i, r) / T(D, r) \right] \right\} \Theta(D_i) \leq \Theta(D),$

(iii)
$$\sum_{i=1}^{k} \left\{ \liminf_{r \to +\infty} \left[T(D_i, r) / T(D, r) \right] \right\} \theta(D_i) \leq \theta(D).$$

Proof. Clearly, given
$$\varepsilon > 0$$
, the definition (6) implies $T(D_i, r)(\delta(D_i) - \varepsilon) < T(D_i, r) - N(D_i, r)$,

for sufficiently large r. Since $N(D, r) = N(D_1, r) + \cdots + N(D_k, r)$ and $T(D, r) = T(D_1, r) + \cdots + T(D_k, r)$, we have

$$\sum_{i=1}^{k} T(D_i, r)(\delta(D_i) - \varepsilon) < T(D, r) - N(D, r),$$

from which follows

$$\sum_{i=1}^{k} \left\{ \liminf_{r \to +\infty} \left[T(D_i, r) / T(D, r) \right] \right\} (\delta(D_i) - \varepsilon) \leq \delta(D).$$

Letting $\varepsilon \to 0$, we get the inequality (i). Noting that $\overline{N}(D, r) \leq \overline{N}(D_1, r) + \cdots + \overline{N}(D_k, r)$, we can similarly show (ii), (iii).

Proposition 3. Let $D=D_1+\cdots+D_k$ be a divisor on W satisfying the condition (4). Then

(8)
$$N(D,r) - \sum_{i=1}^{k} \overline{N}(D_i,r) \leq N_1(r).$$

Proof. Set $S = \{$ the singular locus of Supp $(f^*D)\}$. Take a point $x \in ($ Supp $(f^*D)) - S$, and let (z_1, \dots, z_n) be holomorphic coordinates around x such that Supp $(f^*D) = \{z_1=0\}$ at x. By (4), we can take local coordinates (w_1, \dots, w_n) around f(x) such that $D_i = \{w_i = 0\}, i = 1, \dots, j, j \leq k$, at f(x). Writing f as

$$z=(z_1,\cdots,z_n)\rightarrow w_i=f_i(z), \qquad i=1,\cdots,n,$$

we have

$$\begin{cases} f_i(z) = z_1^{m_i} \cdot g_i(z), & g_i(x) \neq 0, \\ f_i(x) \neq 0, & i = j+1, \dots, n, \end{cases}$$

where each m_i is the multiplicity of f^*D_i at x. Hence

$$f^*D_i - \text{Supp}(f^*D_i) = \begin{cases} (m_i - 1)\{z_1 = 0\}, & i = 1, \dots, j, \\ 0, & i = j + 1, \dots, k. \end{cases}$$

Moreover we see readily that

 $J_f \!=\! z_1^m \!\cdot\! G(z), \qquad m \!=\! \sum_{i=1}^k \,(m_i \!-\! 1), \qquad (J_f) \!\geq\! m\{z_1 \!=\! 0\}, \text{ at } x.$ Thus we have

$$f^*D - \sum_{i=1}^k \operatorname{Supp} (f^*D_i) \leq (J_f), \quad \text{at } x.$$

This holds outside S, and since $\operatorname{codim}_{C^n} S \ge 2$, this holds in C^n .

Q.E.D.

Remark. From (8), it follows that

$$\sum_{i=1}^{k} \left\{ \liminf_{r \to +\infty} \left[T(D_i, r) / T(D, r) \right] \right\} \theta(D_i) \leq \gamma_1(D).$$

F. SAKAI

Q.E.D.

In case n=1, we have $N(D, r) - \overline{N}(D, r) = N_1(r)$, which implies that $\theta(D) = \gamma_1(D)$.

Theorem 3 (Defect relations). Let D_1, \dots, D_k be non-singular divisors on W such that $D=D_1+\dots+D_k$ has only normal crossings. Assume that there exist rational numbers q_0, \dots, q_k such that $\kappa(q_0K_W+\sum_{i=1}^k q_iD_i, W)=n.$

Let $f: \mathbb{C}^n \to W$ be a non-degenerate holomorphic map. Then (i) $\delta(D) + \gamma_1(D) \leq \limsup [-T(K_W, r)/T(D, r)],$

 $\begin{array}{ll} (9) \quad (\mathrm{ii}) \quad \sum_{i=1}^{k} \left\{ \liminf_{r \to +\infty} \left[T(D_i, r) / T(D, r) \right] \right\} \Theta(D_i) \\ \leq \limsup_{r \to +\infty} \left[-T(K_W, r) / T(D, r) \right]. \end{array}$

Proof. Letting
$$L = q_0 K_W + q_1 [D_1] + \dots + q_k [D_k]$$
, we have, by (5),
 $T(D, r) - N(D, r) + N_1(r) \le -T(K_W, r) + O(\log T(L, r)).$

for $r \notin E$. Dividing this by T(D, r), we obtain

(10) $\delta(D) + \gamma_1(D) \leq (-T(K_w, r)/T(D, r)) + O((\log T(L, r))/T(D, r)).$ On the other hand, in consequence of (2), given $\varepsilon > 0$, letting r large enough, we may assume that $(\log T(L, r))/T(L, r) < \varepsilon$. Hence we get

 $\delta(D) + \gamma_1(D) \leq (-T(K_W, r)/T(D, r)) + (\varepsilon CT(L, r)/T(D, r)),$

where
$$C$$
 is a constant. Note that

$$\begin{array}{l} T(L,r)/T(D,r) = q_0(T(K_W,r)/T(D,r)) + \sum_{i=1}^k q_i(T(D_i,r)/T(D,r)), \\ \leq q_0(T(K_W,r)/T(D,r)) + q, \end{array}$$

where $q = q_0 + \cdots + q_k$. Therefore

$$\delta(D) + \gamma_1(D) \leq (1 - \varepsilon C q_0)(-T(K_W, r) / T(D, r)) + \varepsilon C q,$$
 from which follows

$$\delta(D) + \gamma_1(D) \leq (1 - \varepsilon C q_0) \Big\{ \limsup_{r \to +\infty} \left[-T(K_W, r) / T(D, r) \right] \Big\} + \varepsilon C q.$$

Taking the limit as $\varepsilon \rightarrow 0$, we obtain the inequality (i).

Combining (10) with (8), we get similarly

(11)
$$\sum_{i=1}^{k} \left(T(D_i, r) / T(D, r) \right) \Theta(D_i) \\ \leq \left(-T(K_w, r) / T(D, r) \right) + \left(\varepsilon CT(L, r) / T(D, r) \right),$$

which proves the inequality (ii).

Corollary. If $\kappa(D, W) = n$, then the inequalities (9) hold. Proof. It suffices to put $q_0 = 0, q_i = 1, i = 1, \dots, k$.

Corollary. If $\kappa(K_W + D, W) = n$, then the inequalities (9) hold. Corollary (cf. [1], [3], [8]). If $\kappa(K_W + D, W) = n$, then $f(\mathbb{C}^n) \cap D \neq \emptyset$.

Example 1. Let $W = P_n$ and let D_i be a hypersurface of degree d_i , respectively, for $i=1, \dots, k$. Assume that $D=D_1+\dots+D_k$ satisfies the condition (4). Let H be the hyperplane bundle. Since K_{P_n} $= -(n+1)H, [D_i] = d_iH$, we get

 $-T(K_{P_n},r)/T(D,r) = (n+1)/d, \quad T(D_i,r)/T(D,r) = d_i/d, \quad d = \sum_{i=1}^k d_i.$ Hence we obtain

 $\sum_{i=1}^k d_i \delta(D_i) \leq n+1, \qquad \sum_{i=1}^k d_i \Theta(D_i) \leq n+1, \qquad \sum_{i=1}^k d_i \theta(D_i) \leq n+1.$

No. 9]

4. Let D be an irreducible divisor on W and $f: \mathbb{C}^n \to W$ a holomorphic map such that $f(\mathbb{C}^n) \not\subset D$. We write $f^*D = \sum_s m_s Z_s$, with Z_s irreducible. We say that f is ramified over D with multiplicity at least e if $m_s \ge e$ holds for all s.

Lemma 2. If f is ramified over D with multiplicity at least e, then we have

(12)
$$\Theta(D) \ge 1 - (1/e).$$

Proof. Since

 $f^*D = \sum_s m_s Z_s \ge e(\sum_s Z_s) = e$ (Supp (f^*D)),

we get

$$N(D,r) \ge e\overline{N}(D,r).$$

Using this inequality and (1), we obtain

$$1 - (\overline{N}(D, r)/T(D, r)) \ge 1 - (N(D, r)/eT(D, r))$$
$$\ge 1 - (1/e).$$
Q.E.D.

Theorem 4 (Theorem 1 in [8])*. Let D_1, \dots, D_k be non-singular divisors on W such that $D=D_1+\dots+D_k$ has only normal crossings. Let $f: \mathbb{C}^n \to W$ be a non-degenerate holomorphic map which is ramified over D_i with multiplicity at least e_i , respectively. Then

 $\kappa(K_W + \sum_{i=1}^k (1 - (1/e_i))D_i, W) < n.$

Proof. Let $L = K_W + (1 - (1/e_1))[D_1] + \dots + (1 - (1/e_k))[D_k]$. Assume that $\kappa(L, W) = n$. Using (11) and (12), we have

 $T(L,r)/T(D,r) \leq \varepsilon CT(L,r)/T(D,r),$

for large $r \notin E$. From this and (3), it follows that

0

$$<(1-\varepsilon C)(T(L,r)/T(D,r))\leq 0,$$

for sufficiently small ε and for large $r \notin E$. This is a contradiction.

Q.E.D.

Example 2. Let D_1, \dots, D_k be as in Example 1. Suppose that a non-degenerate holomorphic map $f: \mathbb{C}^n \to \mathbb{P}_n$ is ramified over each D_i with multiplicity at least e_i . Then

$$\sum_{i=1}^{k} d_i (1-(1/e_i)) \leq n+1.$$

Remark. Shiffman [9] proved the second main theorem for meromorphic maps. So the results in this paper are valid for meromorphic maps. As for the case in which D has more general singularities, see [8], [9].

References

- Carlson, J., and Griffiths, P.: A defect relation for holomorphic mappings between algebraic varieties. Ann. of Math., 95, 557-584 (1972).
- [2] Drouilhet, J.: Ramification and Unicity of Equidimensional Holomorphic Maps. Thesis, Rice University (1974).
- [3] Griffiths, P., and King, J.: Nevanlinna theory and holomorphic mappings between algebraic varieties. Acta Math., 130, 145-220 (1973).

^{*)} Drouilhet [2] has obtained a similar result independently.

F. SAKAI

- [4] Hayman, W. H.: Meromorphic Functions. Oxford Univ. Press, London (1964).
- [5] Iitaka, S.: On D-dimensions of algebraic varieties. J. Math. Soc. Japan, 23, 356-373 (1971).
- [6] Kodaira, K.: On holomorphic mappings of polydiscs into compact complex manifolds. J. Diff. Geometry, 6, 31-46 (1971).
- [7] Nevanlinna, R.: Analytic Functions. Springer-Verlag, Berlin-Heidelberg-New York (1970).
- [8] Sakai, F.: Degeneracy of holomorphic maps with ramification. Inventiones Math, 26, 213-229 (1974).
- [9] Shiffman, B.: Applications of Geometric Measure Theory to Value-Distribution Theory for Meromorphic Maps. Value-Distribution Theory, Part A, pp. 63-95. Marcel Dekker, New York (1974).