164. Defect Relations and Ramification

By Fumio Sakai
Department of Mathematics, Kochi University
(Comm. by Kunihiko Kodaira, m. J. a., Nov. 12, 1974)

In this paper we generalize the theory of ramified values in the Nevanlinna theory ([4], [7]) to the case of equidimensional holomorphic maps from C^{n} into projective algebraic manifolds and we prove variants of a defect relation of Carlson and Griffiths [1]. (See also [3], [9].)

1. Let W be a projective algebraic manifold of dimension n and L a line bundle on W. Iitaka [5] defined the L-dimension $\kappa(L, W)$ of W, which is roughly the polynomial order of $\operatorname{dim} H^{0}(W, \mathcal{O}(m L))$ as a function of m, as follows. If there is a positive integer m_{0} such that $\operatorname{dim} H^{0}\left(W, \mathcal{O}\left(m_{0} L\right)\right)>0$, we have the following estimate:

$$
\alpha m^{\star} \leqq \operatorname{dim} H^{0}\left(W, \mathcal{O}\left(m m_{0} L\right)\right) \leqq \beta m^{\star}
$$

for large integer m and positive constants α, β, where κ is a non-negative integer uniquely determined by L. Then we define $\kappa(L, W)=\kappa$. In the other case, we put $\kappa(L, W)=-\infty$. In particular, $\kappa(L, W)=n$ if and only if

$$
\limsup _{m \rightarrow+\infty} m^{-n} \operatorname{dim} H^{0}(W, \mathcal{O}(m L))>0 .
$$

For a divisor D on W, denote by $[D]$ the line bundle associated with D. Define $\kappa(D, W)=\kappa([D], W)$. By $L_{1}+\cdots+L_{k}$, we mean the tensor product $L_{1} \otimes \cdots \otimes L_{k}$ of line bundles L_{1}, \cdots, L_{k}. Moreover we shall consider linear combinations of line bundles: $L=q_{1} L_{1}+\cdots+q_{k} L_{k}$, with rational numbers q_{1}, \cdots, q_{k}. Define $\kappa(L, W)$ to be $\kappa(m L, W)$ for any positive integer m such that each $m q_{i}$ is an integer.
2. We shall consider holomorphic maps $f: C^{n} \rightarrow W$, and assume that f is non-degenerate, i.e., the Jacobian J_{f} of f does not vanish identically. Let D be an effective divisor on W. Denote by $\operatorname{Supp}\left(f^{*} D\right)$ the support of the divisor $f^{*} D$. Namely, if $f^{*} D=\sum_{s} m_{s} Z_{s}$, with Z_{s} irreducible, we put $\operatorname{Supp}\left(f^{*} D\right)=\sum_{s} Z_{s}$. Let $\left(z_{1}, \cdots, z_{n}\right)$ be holomorphic coordinates in C^{n}, and let $B[r]$ denote a ball of radius $r: B[r]=\left\{z \in C^{n} \mid\|z\|<r\right\}$, where $\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$. For a set X in C^{n}, let $X[r]=X \cap B[r]$. We use the following notations:

$$
\begin{gathered}
\psi=(2 \pi)^{-1} \sqrt{-1} \partial \bar{\partial} \log \|z\|^{2}, \\
N(D, r)=\int_{0}^{r}\left(\int_{f^{*} D[t]} \psi^{n-1}\right) t^{-1} d t, \\
\bar{N}(D, r)=\int_{0}^{r}\left(\int_{\operatorname{Supp}\left(f^{*}\right)(t t]} \psi^{n-1}\right) t^{-1} d t,
\end{gathered}
$$

$$
N_{1}(r)=\int_{0}^{r}\left(\int_{\left(J_{f}\right)[t]} \psi^{n-1}\right) t^{-1} d t .
$$

Definition. Let L be a line bundle on W and let ω be a real $(1,1)$ form belonging to the Chern class $c_{1}(L)$. Set

$$
T(L, r)=\int_{0}^{r}\left(\int_{B[t]} f^{*} \omega \wedge \psi^{n-1}\right) t^{-1} d t .
$$

For a divisor D, set $T(D, r)=T([D], r)$. For a linear combination of line bundles: $L=q_{1} L_{1}+\cdots+q_{k} L_{k}$, set $T(L, r)=q_{1} T\left(L_{1}, r\right)+\cdots$ $+q_{k} T\left(L_{k}, r\right)$.

Let D be an effective divisor on W. We have the following
Theorem 1 (see [1], [3] for a proof).

$$
\begin{equation*}
N(D, r)<T(D, r)+O(\mathbf{1}) \tag{1}
\end{equation*}
$$

Proposition 1. If $f\left(C^{n}\right) \cap D \neq \emptyset$, then

$$
\liminf _{r \rightarrow+\infty}[T(D, r) / \log r]>0
$$

Corollary. If L is a line bundle such that $\kappa(L, W) \geqq 1$, then

$\liminf _{r \rightarrow+\infty}[T(L, r) / \log r]>0$.

Proposition 2. If L is a line bundle such that $\kappa(L, W)=n$, then (3) $\liminf _{r \rightarrow+\infty}[T(L, r) / T(D, r)]>0$.
Proof. This follows from the fact that there is an effective divisor $Z \in|m L-D|$ for some large integer m (cf. [6], [8]).

Let $D=D_{1}+\cdots+D_{k}$ be a divisor on W satisfying the following conditions:
(i) Each D_{i} is non-singular,
(ii) D has only normal crossings.

By a similar method as in [1], [3], [8], we obtain
Theorem 2 (Second main theorem). Let L be a line bundle such that $\kappa(L, W)=n, \beta$ a constant, $0<\beta<1$, and let K_{W} denote the canonical bundle of W. Then
(5) $\quad T(D, r)-N(D, r)+N_{1}(r) \leqq-T\left(K_{W}, r\right)+O(\log T(L, r))$,
for $r \notin E$, where E is a union of intervals $\subset[0,+\infty)$ such that $\int_{E} d\left(r^{\beta}\right)<+\infty$.
3. Let D be a divisor on W and $f: C^{n} \rightarrow W$ a holomorphic map. Define

$$
\begin{align*}
\delta(D) & =1-\limsup _{r \rightarrow+\infty}[N(D, r) / T(D, r)] . \\
\Theta(D) & =1-\lim _{r \rightarrow+\infty}[\bar{N}(D, r) / T(D, r)] . \tag{6}\\
\theta(D) & =\liminf _{r \rightarrow+\infty}[(N(D, r)-\bar{N}(D, r)) / T(D, r)], \\
\gamma_{1}(D) & =\liminf _{r \rightarrow+\infty}\left[N_{1}(r) / T(D, r)\right] .
\end{align*}
$$

Remark. The quantity $\delta(D)$ is called the defect of D and $\theta(D)$ is called the ramification index of D. It is easily seen that
$0 \leqq \delta(D) \leqq 1, \quad 0 \leqq \Theta(D) \leqq 1, \quad 0 \leqq \theta(D) \leqq 1, \quad \delta(D)+\theta(D) \leqq \Theta(D)$. If $f\left(C^{n}\right) \cap D=\emptyset$, then $\delta(D)=1, \Theta(D)=1$, and $\theta(D)=0$.

Lemma 1. Let D_{1}, \cdots, D_{k} be divisors on W and let $D=D_{1}+\cdots$ $+D_{k}$. Then we have
(i) $\quad \sum_{i=1}^{k}\left\{\liminf _{r \rightarrow+\infty}\left[T\left(D_{i}, r\right) / T(D, r)\right]\right\} \delta\left(D_{i}\right) \leqq \delta(D)$,
(ii) $\sum_{i=1}^{k}\left\{\liminf _{r \rightarrow+\infty}\left[T\left(D_{i}, r\right) / T(D, r)\right]\right\} \Theta\left(D_{i}\right) \leqq \Theta(D)$,
(iii) $\quad \sum_{i=1}^{k}\left\{\liminf _{r \rightarrow+\infty}\left[T\left(D_{i}, r\right) / T(D, r)\right]\right\} \theta\left(D_{i}\right) \leqq \theta(D)$.

Proof. Clearly, given $\varepsilon>0$, the definition (6) implies

$$
T\left(D_{i}, r\right)\left(\delta\left(D_{i}\right)-\varepsilon\right)<T\left(D_{i}, r\right)-N\left(D_{i}, r\right),
$$

for sufficiently large r. Since $N(D, r)=N\left(D_{1}, r\right)+\cdots+N\left(D_{k}, r\right)$ and $T(D, r)=T\left(D_{1}, r\right)+\cdots+T\left(D_{k}, r\right)$, we have

$$
\sum_{i=1}^{k} T\left(D_{i}, r\right)\left(\delta\left(D_{i}\right)-\varepsilon\right)<T(D, r)-N(D, r),
$$

from which follows

$$
\sum_{i=1}^{k}\left\{\liminf _{r \rightarrow+\infty}\left[T\left(D_{i}, r\right) / T(D, r)\right]\right\}\left(\delta\left(D_{i}\right)-\varepsilon\right) \leqq \delta(D) .
$$

Letting $\varepsilon \rightarrow 0$, we get the inequality (i). Noting that $\bar{N}(D, r) \leqq \bar{N}\left(D_{1}, r\right)$ $+\cdots+\bar{N}\left(D_{k}, r\right)$, we can similarly show (ii), (iii).

Proposition 3. Let $D=D_{1}+\cdots+D_{k}$ be a divisor on W saisfying the condition (4). Then

$$
\begin{equation*}
N(D, r)-\sum_{i=1}^{k} \bar{N}\left(D_{i}, r\right) \leqq N_{1}(r) . \tag{8}
\end{equation*}
$$

Proof. Set $S=\left\{\right.$ the singular locus of $\left.\operatorname{Supp}\left(f^{*} D\right)\right\}$. Take a point $x \in\left(\operatorname{Supp}\left(f^{*} D\right)\right)-S$, and let $\left(z_{1}, \cdots, z_{n}\right)$ be holomorphic coordinates around x such that $\operatorname{Supp}\left(f^{*} D\right)=\left\{z_{1}=0\right\}$ at x. By (4), we can take local coordinates $\left(w_{1}, \cdots, w_{n}\right)$ around $f(x)$ such that $D_{i}=\left\{w_{i}=0\right\}, i=1, \cdots, j$, $j \leqq k$, at $f(x)$. Writing f as

$$
z=\left(z_{1}, \cdots, z_{n}\right) \rightarrow w_{i}=f_{i}(z), \quad i=1, \cdots, n,
$$

we have

$$
\begin{cases}f_{i}(z)=z_{1}^{m_{i}} \cdot g_{i}(z), & g_{i}(x) \neq 0, \\ f_{i}(x) \neq 0, & i=1, \cdots, j \\ & i=j+1, \cdots, n,\end{cases}
$$

where each m_{i} is the multiplicity of $f^{*} D_{i}$ at x. Hence

$$
f^{*} D_{i}-\operatorname{Supp}\left(f^{*} D_{i}\right)= \begin{cases}\left(m_{i}-1\right)\left\{z_{1}=0\right\}, & i=1, \cdots, j \\ 0, & i=j+1, \cdots, k\end{cases}
$$

Moreover we see readily that

$$
J_{f}=z_{1}^{m} \cdot G(z), \quad m=\sum_{i=1}^{k}\left(m_{i}-1\right), \quad\left(J_{f}\right) \geqq m\left\{z_{1}=0\right\}, \text { at } x .
$$

Thus we have

$$
f^{*} D-\sum_{i=1}^{k} \operatorname{Supp}\left(f^{*} D_{i}\right) \leqq\left(J_{f}\right), \quad \text { at } x .
$$

This holds outside S, and since $\operatorname{codim}_{C^{n}} S \geqq 2$, this holds in C^{n}.
Q.E.D.

Remark. From (8), it follows that

$$
\sum_{i=1}^{k}\left\{\liminf _{r \rightarrow+\infty}\left[T\left(D_{i}, r\right) / T(D, r)\right]\right\} \theta\left(D_{i}\right) \leqq \gamma_{1}(D) .
$$

In case $n=1$, we have $N(D, r)-\bar{N}(D, r)=N_{1}(r)$, which implies that $\theta(D)$ $=\gamma_{1}(D)$.

Theorem 3 (Defect relations). Let D_{1}, \cdots, D_{k} be non-singular divisors on W such that $D=D_{1}+\cdots+D_{k}$ has only normal crossings. Assume that there exist rational numbers q_{0}, \cdots, q_{k} such that

$$
\kappa\left(q_{0} K_{W}+\sum_{i=1}^{k} q_{i} D_{i}, W\right)=n
$$

Let $f: C^{n} \rightarrow W$ be a non-degenerate holomorphic map. Then
(i) $\delta(D)+\gamma_{1}(D) \leqq \limsup _{r \rightarrow+\infty}\left[-T\left(K_{W}, r\right) / T(D, r)\right]$,
(9)
(ii) $\sum_{i=1}^{k}\left\{\liminf _{r \rightarrow+\infty}\left[T\left(D_{i}, r\right) / T(D, r)\right]\right\} \Theta\left(D_{i}\right)$

$$
\leqq \limsup _{r \rightarrow+\infty}\left[-T\left(K_{W}, r\right) / T(D, r)\right]
$$

Proof. Letting $L=q_{0} K_{W}+q_{1}\left[D_{1}\right]+\cdots+q_{k}\left[D_{k}\right]$, we have, by (5), $T(D, r)-N(D, r)+N_{1}(r) \leqq-T\left(K_{W}, r\right)+O(\log T(L, r))$,
for $r \notin E$. Dividing this by $T(D, r)$, we obtain
(10) $\delta(D)+\gamma_{1}(D) \leqq\left(-T\left(K_{W}, r\right) / T(D, r)\right)+O((\log T(L, r)) / T(D, r))$.

On the other hand, in consequence of (2), given $\varepsilon>0$, letting r large enough, we may assume that $(\log T(L, r)) / T(L, r)<\varepsilon$. Hence we get

$$
\delta(D)+\gamma_{1}(D) \leqq\left(-T\left(K_{W}, r\right) / T(D, r)\right)+(\varepsilon C T(L, r) / T(D, r)),
$$

where C is a constant. Note that

$$
\begin{aligned}
T(L, r) / T(D, r) & =q_{0}\left(T\left(K_{W}, r\right) / T(D, r)\right)+\sum_{i=1}^{k} q_{i}\left(T\left(D_{i}, r\right) / T(D, r)\right), \\
& \leqq q_{0}\left(T\left(K_{W}, r\right) / T(D, r)\right)+q
\end{aligned}
$$

where $q=q_{0}+\cdots+q_{k}$. Therefore

$$
\delta(D)+\gamma_{1}(D) \leqq\left(1-\varepsilon C q_{0}\right)\left(-T\left(K_{W}, r\right) / T(D, r)\right)+\varepsilon C q,
$$

from which follows

$$
\delta(D)+\gamma_{1}(D) \leqq\left(1-\varepsilon C q_{0}\right)\left\{\limsup _{r \rightarrow+\infty}\left[-T\left(K_{W}, r\right) / T(D, r)\right]\right\}+\varepsilon C q
$$

Taking the limit as $\varepsilon \rightarrow 0$, we obtain the inequality (i).
Combining (10) with (8), we get similarly

$$
\begin{align*}
& \sum_{i=1}^{k}\left(T\left(D_{i}, r\right) / T(D, r)\right) \Theta\left(D_{i}\right) \tag{11}\\
& \quad \leqq\left(-T\left(K_{W}, r\right) / T(D, r)\right)+(\varepsilon C T(L, r) / T(D, r)),
\end{align*}
$$

which proves the inequality (ii).
Q.E.D.

Corollary. If $\kappa(D, W)=n$, then the inequalities (9) hold.
Proof. It suffices to put $q_{0}=0, q_{i}=1, i=1, \cdots, k$.
Corollary. If $\kappa\left(K_{W}+D, W\right)=n$, then the inequalities (9) hold.
Corollary (cf. [1], [3], [8]). If $\kappa\left(K_{W}+D, W\right)=n$, then $f\left(C^{n}\right) \cap D \neq \emptyset$.
Example 1. Let $W=\boldsymbol{P}_{n}$ and let D_{i} be a hypersurface of degree d_{i}, respectively, for $i=1, \cdots, k$. Assume that $D=D_{1}+\cdots+D_{k}$ satisfies the condition (4). Let H be the hyperplane bundle. Since $K_{P_{n}}$ $=-(n+1) H,\left[D_{i}\right]=d_{i} H$, we get
$-T\left(K_{P_{n}}, r\right) / T(D, r)=(n+1) / d, \quad T\left(D_{i}, r\right) / T(D, r)=d_{i} / d, \quad d=\sum_{i=1}^{k} d_{i}$. Hence we obtain

$$
\sum_{i=1}^{k} d_{i} \delta\left(D_{i}\right) \leqq n+1, \quad \sum_{i=1}^{k} d_{i} \Theta\left(D_{i}\right) \leqq n+1, \quad \sum_{i=1}^{k} d_{i} \theta\left(D_{i}\right) \leqq n+1 .
$$

4. Let D be an irreducible divisor on W and $f: C^{n} \rightarrow W$ a holomorphic map such that $f\left(C^{n}\right) \not \subset D$. We write $f^{*} D=\sum_{s} m_{s} Z_{s}$, with Z_{s} irreducible. We say that f is ramified over D with multiplicity at least e if $m_{s} \geqq e$ holds for all s.

Lemma 2. If f is ramified over D with multiplicity at least e, then we have

$$
\begin{equation*}
\Theta(D) \geqq 1-(1 / e) . \tag{12}
\end{equation*}
$$

Proof. Since

$$
f^{*} D=\sum_{s} m_{s} Z_{s} \geqq e\left(\sum_{s} Z_{s}\right)=e\left(\operatorname{Supp}\left(f^{*} D\right)\right)
$$

we get

$$
N(D, r) \geqq e \bar{N}(D, r)
$$

Using this inequality and (1), we obtain

$$
\begin{aligned}
1-(\bar{N}(D, r) / T(D, r)) & \geqq 1-(N(D, r) / e T(D, r)) \\
& \geqq 1-(1 / e)
\end{aligned}
$$

Q.E.D.

Theorem 4 (Theorem 1 in [8])*). Let D_{1}, \cdots, D_{k} be non-singular divisors on W such that $D=D_{1}+\cdots+D_{k}$ has only normal crossings. Let $f: C^{n} \rightarrow W$ be a non-degenerate holomorphic map which is ramified over D_{i} with multiplicity at least e_{i}, respectively. Then

$$
\kappa\left(K_{W}+\sum_{i=1}^{k}\left(1-\left(1 / e_{i}\right)\right) D_{i}, W\right)<n
$$

Proof. Let $L=K_{W}+\left(1-\left(1 / e_{1}\right)\right)\left[D_{1}\right]+\cdots+\left(1-\left(1 / e_{k}\right)\right)\left[D_{k}\right]$. Assume that $\kappa(L, W)=n$. Using (11) and (12), we have

$$
T(L, r) / T(D, r) \leqq \varepsilon C T(L, r) / T(D, r)
$$

for large $r \notin E$. From this and (3), it follows that

$$
0<(1-\varepsilon C)(T(L, r) / T(D, r)) \leqq 0
$$

for sufficiently small ε and for large $r \notin E$. This is a contradiction.
Q.E.D.

Example 2. Let D_{1}, \cdots, D_{k} be as in Example 1. Suppose that a non-degenerate holomorphic map $f: \boldsymbol{C}^{n} \rightarrow \boldsymbol{P}_{n}$ is ramified over each D_{i} with multiplicity at least e_{i}. Then

$$
\sum_{i=1}^{k} d_{i}\left(1-\left(1 / e_{i}\right)\right) \leqq n+1
$$

Remark. Shiffman [9] proved the second main theorem for meromorphic maps. So the results in this paper are valid for meromorphic maps. As for the case in which D has more general singularities, see [8], [9].

References

[1] Carlson, J., and Griffiths, P.: A defect relation for holomorphic mappings between algebraic varieties. Ann. of Math., 95, 557-584 (1972).
[2] Drouilhet, J.: Ramification and Unicity of Equidimensional Holomorphic Maps. Thesis, Rice University (1974).
[3] Griffiths, P., and King, J.: Nevanlinna theory and holomorphic mappings between algebraic varieties. Acta Math., 130, 145-220 (1973).
*) Drouilhet [2] has obtained a similar result independently.
[4] Hayman, W. H.: Meromorphic Functions. Oxford Univ. Press, London (1964).
[5] Iitaka, S.: On D-dimensions of algebraic varieties. J. Math. Soc. Japan, 23, 356-373 (1971).
[6] Kodaira, K.: On holomorphic mappings of polydiscs into compact complex manifolds. J. Diff. Geometry, 6, 31-46 (1971).
[7] Nevanlinna, R.: Analytic Functions. Springer-Verlag, Berlin-HeidelbergNew York (1970).
[8] Sakai, F.: Degeneracy of holomorphic maps with ramification. Inventiones Math, 26, 213-229 (1974).
[9] Shiffman, B.: Applications of Geometric Measure Theory to Value-Distribution Theory for Meromorphic Maps. Value-Distribution Theory, Part A, pp. 63-95. Marcel Dekker, New York (1974).

