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1. Introduction. The ollowing is the well-known theorem
Jordan ([8], p. 65).

Theorem (Jordan). Let G be a k-transitive permutation group
on a set [2, k>=2, and G be not the symmetric group on [2. If H=/= 1 is
a normal subgroup of G, then H is (k--1)-transitive on 12 with the
exception when [tO is a power of 2 and k--3, and in this exceptional case
H may be an elementary abelian 2-group transitive and regular on

This theorem is refined by A. Wagner [7], N. Ito [4], M. Aschbacher
[1], J. Saxl [6], and E. Bannai [2]. In this note we shall prove the
following"

Theorem.x) Let G be a 4-fold transitive permutation group on a
set [2, where 1/21--5m+4 (m" integer) and greater than 5. If H=/=I is
a normal subgroup of G, then H is also 4-fold transitive on

2. Proof of the theorem. In order to prove the theorem weneed
the ollowing

Lemma. Let G be a t-fold transitive permutation group on a set
[2 for t>=4 and let Hg=l be a normal subgroup of G. Then for all
z1[2 with lll=t, H)--Zt.

Proof. We omit the proof o the lemma. (See [3].)
Now we start with the proof o the theorem. Suppose 191=5m+ 4

be the minimal degree > 5 such that there is a counterexample to the
theorem. Let G be a 4-old transitive group on /2 o degree 5m+4
containing a non-trivial normal subgroup H which is 3-old transitive
but not 4-old transitive on 9. Let , fl, . e tO and let/’, ..., F be the

H.-orbits on 9-{a, fl,.}. Then by assumption k__>2, I/]=
and FI is not divisible by 5. At first we shall show that there exists
a non-trivial 5-element in H fixing at least 4 points o 9. By the lemma
above and a result o Wagner ([7], Lemma 4), FI must be even. Let
e F and let T be a Sylow 2-subgroup o H.. Then T:/: 1 by Theo-

rem 2 o J. King [5]. Now if TqG., or some g e G then T
H--H., and hence there is an element h o H., such that Tq--T.

Thus by a well-known lemma of Witt N(T)f is 4-fold transitive.

1) I was inf’ormed that the same result was obtained also. by E. Bannai
(University of Tokyo) independently.
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Since [F]=lH..sr: H.r] is even, N(T)* r:/:l. Then NH(T) is 3-
old transitive by the theorem of Jordan, and using again the above
mentioned theorem of King we see that Ifix T] is 5, 7 or 11 and NH(T)
is S,A or ii. So 51INn(T)* rl" Hence there is an element y e H
which is o order 5. Since tOl--5m + 4, y fixes at least 4 points of tO
and hence 5 divides [H,m]. Let Q be a Sylow 5-subgroup of H,m. Then
by the same reason as for T the above Na(Q) Q is 4-fold transitive.
Since ]FI is not divisible by 5, Q is a Sylow 5-subgroup of H.r and
hence by a lemma of Witt NH(Q) Q is 3-fold transitive, in particular
NH(Q)Q:/:I. Clearly[fixQl=5a+4 (a: integer) and 5a+45m+4.
Since NH(Q) Q<JNa(Q) Q, Nn(Q) Q is either 4-fold transitive on
fix Q or 3-fold transitive on fix Q with Ifix QI=4. In either case we
get the following: fix Q-{a, fl,.}F. Thus Q has no fixed point on
F. Hence 5 divides IF.I=IF], which is a contradiction. Thus we
complete the proo of the theorem.
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