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190. Characters of Finite Groups with Split (B, N)-Pairs

By Sohei NozawaA
Department of Mathematics, University of Tokyo

(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1974)

§ 1. In our previous paper [4], we discussed the irreducibility of
characters of the finite general unitary group GU(n,¢? induced by
those of a direct product of the finite general linear group GL(k, ¢%
and GU(n—2k, q¢¥). Recently we were suggested by Professor
C. W. Curtis that one would be able to get a similar result for finite
groups with split (B, N)-pairs. Using the results of intersections of
parabolic subgroups in a paper by Curtis [2], we could generalize the
result in our paper [4]. Note that this is a special case of Theorem
3.5 due to Curtis [2].

I wish to thank Professor Curtis for his suggestion to me on this
problem and also for the generous use of his preprint [2].

By a character of a group, we mean a rational integral combination
of its complex irreducible characters. Standard notations for finite
group theory and character theory will be used.

Let G be a finite group with a split (B, N)-pair of characteristic
p, for some prime p, and Coxeter system (W, R). Let P; be a standard
maximal parabolic subgroup of G, L, the standard Levi factor of P,
for some JCR. Then P; has a semi-direct decomposition P,=L;V,
of V,=0,(P,) by L,;, which we call the Levi decomposition of P,. If
x is an irreducible character of L,, then we can extend y to an irreduci-
ble character § of P, by putting 5(lv)=x() forle L;,ve V,. We shall
now prove the following

Theorem. Let W, ; be the set of distinguished (W ;, W ;)-double
coset representatives of W. Assume that (i) y is not a self-conjugate
and (ii) no kernel of irreducible constituents of the restriction of % to
L;N¥P; contains L; NV ; whenever L;+%“L; for we W,;,;. Then the
character ¢ of G induced by § is irreducible.

In order to prove this theorem, we must calculate the scalar prod-
uct (3¢, ¥%)¢. To do this, it will be necessary to derive some infor-
mations of parabolic subgroups. In §2, we shall state several results
about intersections of parabolic subgroups due to Curtis [2]. The
theorem is proved in § 3. The proof is a simple combination of lemmas
in §2, §3.

§2. Let(G,B,N,W,R)beas in §1. Then W is isomorphic to
the Weyl group W(4) of a uniquely determined root system 4, such
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that the set R corresponds to a set of fundamental reflections of W(4)
with respect to a set of simple roots I/ ={«a,, - - -, a,} in 4. We identify
W with W(4) and R with the set of fundamental reflections {r,, - - -, 7,}.
We denote by l(w) the length of w as an element of (W, R). The set
of positive (resp. negative) roots in 4 with respect to I7 is denoted by 4,
(resp. 4.). Wealsoput, forwe W, 4;=4, Nw=4,),d;=4, Nw=(4_).
Moreover let wjy denote the unique element of W such that wz(4,)=4_.
Then wj is an involution.

Now put T=BNN. Asis well-known, T<{N, N/T=W and B is
a semi-direct product UT of U=0,(B) by T. Let {n,} be a fixed set
of coset representatives of 7'in N, such that n,, T corresponds to w ¢ W.
We may write BwB for Bn,B and write H* (resp. “H) instead of H"»
(resp. "=H) for a subgroup H of G normalized by T. We also put U,,
=UNU»#:. Note that T normalizes the {U,,; «; € II}, so that W acts
on the set of N-conjugates of the {U,,; ;€ II}. Thus we can speak
unambiguously of root subgroups U, for «e 4 and have the familiar
rule *U,=Uy,, for we W,ac 4. Then U is generated by U, corre-
sponding to we 4,.

For JC R, we denote by W, the parabolic subgroup of W generated
by J, and by P, the corresponding standard parabolic subgroup of G,
given by P,=BW ;B. Let II; be the set of simple roots corresponding
to J, 4; the root system generated by 17, and put 4, ,=4,N4d;,4,,_
=4_N4d,;. Let w; denote the unique element of W, such that w,(4,,,)
=4;,_. Then w; is an involution and (W,,J) is a Coxeter system.

Next two lemmas are elementary.

Lemma 2.1. Let we W. Then

@) Uraw)=Uw)+1if wi(a)e4d,,

() Uwr)=Uw)x1if w(a,)e 4.,

(¢) Br;BwBZBrwB if l(r;w)>1l(w),

(d) Br;BwBNBwB=+@ if l(r,w)<lw).

Proof. See [1].

Lemma 2.2. Let JCR and we W;. Then wd,—4;.,)=4,.. In
particular, 4;,=4,.—4,, ., and 4;,=4,,,.

Proof. Asr(4,—{a;p)=4,—{a;}, wehavew(d,—4,,)=4,. Hence
4,&4,,,.. However the definition of w; implies that 4;, &4, —4,, , and
4;,.Z4,,. This completes the proof.

Let L; be the subgroup of P; generated by T and U, correspond-
ing to a € 4;, which is called the standard Levi factor of P, and P,
=L;V; be the Levi decomposition of P;. Thus V, is the unique
maximal normal p-subgroup of P, generated by U, corresponding to
aed, —4;,.,P;=NgsV,) and (L;,B;, N;, W;,J) is a finite group with a
split (B, N)-pair, where B;=BNL;,N;=NNL,;. Moreover we have
B=B,V,.



No. 10] Characters of Finite Groups with Split (B, N)-Pairs 831

For J,J/CR, let W;,, be the set of distinguished (W, W ,.)-double
coset representatives of W, that is, we W, ;. satisfies w(a) e 4., w=(p)
ed, foraecll, ,pell; and w is the element of W of the shortest length
in W,wW,.. We now put K=JN%J’ for a fixed element w of W ;.
Note that G= |J P,wP, (disjoint union) and W,N*W ; =Wg. For

weWy,g’
the rest of this section, these notations will be used.

The following lemma is of importance in the later development.

Lemma 2.3. (@) H;Nw(l;)=Ig,4;Nw(d;)=A4dxk,

) 4;,Cwd,),wd,;. )4,

(c) AK,+ :AJ,+ n w(AJ',+)’

(@ 4;,—45,<wd;,)N4d,.

Proof. (a) a=w(p) for aell;,pell, if and only if w,=*w,c W,
N*W,;=Wg. So (a)isclear. (b) As I(rw)>l(w) and l(wr")>l(w) for
red,r eJ’, we have w4, ,)C4, and w(d,; ,)Z4, by Lemma 2.1.
(a) and (b) implies that w4, —4,.,,)N4dx=0. Hence we get (¢). (d)
Ifaed),—4;,, thenae 4;,, Nw(d,) and « & 4dg,, by Lemma 2.2. There-
fore (c) implies (d) and so the lemma is proved.

We can now derive some consequences for intersections of parabolic
subgroups of G, which are based on preceding lemmas.

Lemma 2.4, Pr=P;N*P;)V,.

Proof. By Lemma 2.3 (b) we have B;<L;,N*B<P;N*P,; and so
B<(P;N*P,;)V,;. Hence (P;N“P;)V;=P; for some ICR. As l(rw)
>1l(w) for reJ, we have rBwC BrwB by Lemma 2.1 (¢). Then, for
w, e W,, it is easy to see that Bw,BwBZ Bw,wB, because l(w,w)=Uw,)
+U(w), etc. By a similar reason, BwBw,BCBww,B for w,e W,.
Hence aw,bw=wcw,d ¢ Bw,wB N Bww,B, where a,b,c,de B,w, e W,,
w,e W;.. Thus BwwBNBww,B+@. Then ww=ww, and so (P,
N»P, )V, <B(W,;N*W;)B=Pg. The reverse inclusion is clear.

Lemma 2.5. (@) Vge=L,N*V,;)V,,

(b) PJ N wVJ’ = (LJ n wVJ')(VJ n wVJ'),

) V,N“Pp=V;N"L;)V,;N*Vy),

(d L,N®P,, is a standard parabolic subgroup of L;; in fact, L,
N*P,, =PxNL; and L; N*P;,.=Lg(L;\*V,.) is a Levi decomposition
of Ly N®P,, with L;N*V ;. =0,L,;N"P,.).

Proof. (a) As V, is normalized by L,N*V,., (L;N*V,;)V;isa
group. “V, is the group generated by “U, corresponding to a e 4;,.
and so Vx<(L,;N*V,;)V, by Lemma 2.3 (d). Suppose « € w(d;,)N4;.
Then we have ac 4,,a & 4 by Lemma 2.3 (a)(b). Hence we have «
e 4;, by Lemma2.2. ThusL,N*V,; <Vg. Clearly V,<Vgby Lemma
2.3 (a). Hence we get (a). (b) As (P,N*V,)V,<U, (P;,N*V;)V, is
a normal p-subgroup of P and so (P,;N*V,;)V,;<0,(Px)=Vg. Each
element z e P,N*V,, is uniquely expressible in the form x=yz with
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yeL;,zeV;. Asze Vg, we have ye “V,; by Lemma 2.8 (d). Hence
z2=yxe®V,. Thus P,N*V,.<(L,N*V ) V,;N*V;). The reverse
inclusion is clear. (c) As w™e W, ;, (b) implies (c). (d) It is easy
to see that PN L, is a standard parabolic subgroup of L, with Levi
factor Ly and VoNL;=0,(PxNL;). Wealsohave VyNL;=L;N*V,,
by (a) and Ly <L, N*L;. by Lemma 2.3 (a). Hence Py NL,<L;N%*P,..
On the other hand, L; N“P,;, <Py by Lemma 2.4. Therefore L;N*P,,
=PxNL,;. This completes the proof.

Lemma 2.6. The following conditions are equivalent.

(@ L,N*V,=1.

(b) L,<*L,.

Proof. If (a) holds, then V=V, by Lemma 2.5 (a). Hence Py
=P, and s0o Wg=W,. Thus dx=4;. This implies (b) by Lemma
2.3 (a). If (b) holds, then L,N*V, <*L, N*V, =1 and the result
follows.

Lemma 2.7. P;N®P;, =Lx(L,N*V;)(V,N*L;)(V,N*V,). In
particular, P;N*P,;, =L, (V,N*V,) if L;<*L;,..

Proof. By Lemmas2.4,2.5(a) wehave P;N*“P,; <L (L;N*V;)V,;
and so P;N“P;, =Lx(L,N*V,;.)(V;N*P;). Hence the first part is
proved by Lemma 2.5 (¢). Suppose L;<*L;.. By Lemma 2.6 we have
P,N%P;,=Lg(V,N*V,;). But it follows from the proof of Lemma 2.6
that 4x=4;. Therefore Ly=L;. This completes the proof.

§ 3. Wefirst begin with next two lemmas which are of importance
for the applications of character theory.

Lemma 3.1. Let H be a subgroup of a group G, y an irreducible
character of H. Let {9;} be the set of (H, H)-double coset represent-
atives of G and put H;=HN%H. Then

(% 1De=221 O "V

Proof. This is a special case of the well-known result, due to

Mackey (see [3]).

Lemma 3.2. Let H be a normal subgroup of a group G, y an ir-
reducible character of G. Assume that the kernel of y does not contain
H. Then, for ge G, 2 1en x(gh)=0.

Proof. Itfollowsfrom the assumption and Frobenious reciprocity
theorem that (yz, 1)z =(x, 1$)s=0, where 15 is the principal character
of H. We now denote by y the matrix representation of G which
affords y and put S=>,cx x(h). Since HIG, Sy(9)=x(9)S for geG.
Hence Schur’s lemma asserts that S is a scalar matrix and so S=0.
Therefore taking the trace, we have > ,.x x(9h) =0, as required.

Throughout the rest of this section, we assume the notations of
our theorem. For shortness, write P, L,V instead of P;,L;,V, re-
spectively. For a fixed element w e W, ,, we denote by I,, the scalar
product (7, D pawr and put K=JN%J.
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3.3. If L+"L, then I,=0.

Proof. By the canonical form for elements of PN*P established
in Lemma 2.7, each element of PN*P has a unique expression in the
form xyzv, where x e Lg,ye LN*V,2ze VN¥*L,ve VN*V. Hence we
have

I,=|VN*V[-[PN*“P| 3,.,.. Hxy2)°1(xyz),
because VN*V is contained in the kernels of both characters ¥, “7.
Since VN*L, LN*V are also contained in the kernels of #,*7 respec-
tively and L normalizes V, we have

L,=|VN*V|-|PN“P[* 3, ... t@y)y(x2),
where the sum is taken over all xe Lg,yec LN*V,2e VN*L. As
LN*VALx(LN*V), we have, by Lemma 8.2 and assumption (ii),
ZyeanV x(@y)=0.

This implies I,,=0.

3.4. If L="L and w+1, then I,=0.

Proof. By Lemma 2.7 it is easy to see that I,=(y,%y).. Hence
it follows from assumption (i) that I,,=0, as required.

3.5. Conclusion. By Lemmas3.1, 3.83and 3.4 (7%, #%e¢=2wew,,s lw
=I,=1. Hence %#° is irreducible. This completes the proof of our
theorem.

§4. Let GU,=GU(xn, q*) be the group of all non-singular nXxXn
matrices g with elements in the Galois field GF(¢?) satisfying g¢*j.9
=4,, where g* is the conjugate transpose of g and j, is the matrix

[ 1
K ) ] of degree n, GL,=GL(n, ¢°) the group of all non-gingular nxXn
1
matrices ¢ with elements in GF(¢®). We denote by P, , the maximal
parabolic subgroup of GU, which consists of all matrices of the forms

a d e
b flwithaeGL,beGU,_,, a*jc=74.
c

Let take G, P; in our theorem to be GU,, P, , respectively. Hence
L,=GL,XGU,_,,. Then we can get, by our theorem, some families
of irreducible characters of GU, from those of GL, and GU,_,.

Finally we give, for n=4,5, a list of the degrees of irreducible
characters obtained by such a way.

Case of n=4: q(@+1D(@+1D), (@+D(@+D, (@—D(@+D(@’+D),
@+ D(@+D(@+ 1), ¢(q+D(*+1), (¢+1(*+1D), (¢+D(¢*—D(¢*+1).

Case of n=>5: ¢’s, q(¢—Ds, s, q(¢®—q+Ds, (¢—D(¢*—q+Ds,
(@ —q+Ds, (@®+Ds, (g+D(@—Ds, ¢t (F—Dt, ¢, where s
=(¢"+1D(¢°+1) and t=(¢*+1(¢°+1) (see [4]).
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