
818 Proc. Japan Acad., 5:0 (1974) [Vol. 50,

187. Denseness of Singular Densities
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Mathematical Institute, Department of Education, Fukui University

(Comm. by K6saku YOSIDA, M. J. A., Dec. 12, 1974)

Consider a 2-form P(z)dxdy on an open Riemann surface R such
that the coefficients P(z) are nonnegative locally HSlder continuous
functions of local parameters z-x+ iy on R. Such a 2-form P(z)dxdy
will be referred to as a density on R. We shall call a density P singular
if any nonnegative C solution u of the elliptic equation
( 1 Ju(z)--P(z)u(z) (i.e. d*du(z)-u(z)P(z)dxdy)
on R has the zero infimum, i.e. inf,ea u(z)--O. We denote by D--D(R)
and Ds Ds(R) the set of densities and singular densities on R, respec-
tively. According to Myrberg [2], (1) always possesses at least one
strictly positive solution for any open Riemann surface R. In con-
nection with the existence of Evans solution, Nakai [5] showed that
Ds=/:0 for any open Riemalm surface R. The purpose of this note is
to show that D is not only nonvoid but also contains sufficiently many
members in the following sense" Ds is dense in D with respect to the
metric

p(P1, P2)-- R]PI(z)--P2(z)} dxdy
on D, where a*--a/(l+a) for nonnegative numbers and c*-l.
Namely, we shall prove the following

Theorem. The subspace D,(R) of singular densities is dense in
the metric space (D(R), ) for any open Riemann surface R.

Proof. We only have to show that for any P e D and any
there exists a Q e Ds such that

( 2 [P(z)-- Q(z) dxdy

Our proof goes on an analogous way to [5]. Let ({z}, {U}, {]})
(]-1, 2,...) be a system such that {z} is a sequence of points in R not
accumulating in R, U are parametric disks on R with centers z such
that U--O (]=/=tc), and {;} is a sequence with W0 and ,=W=z
Furthermore we denote by V the concentric parametric disk
=exp (-- 4/z]) of U (]-1, 2,...). Let G(z, ) be the Green’s function
on S=R-- )__ V for (1). Fix a point z0 e S and set
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G(zo, ).( 3 ) Mineo p
Since 0 (el. It5 [1]), by Lemma 1 in [5], there exist densities
P(z)dxdy on R whose supports are contained in V such that

for every f in C(3V) and P(z)dxdy<_] for each ]--1,2,..., where
JR

P is the continuous function on V such that P ]3V=f and P is
solution of (1) on V. Using the above densities P we define

Q(z)dxdy--P(z)dxdy+ ,=1P(z)dxdy
on R. Clearly Q(z)dxdy stisfies the inequality (2), We have to prove
that Q e D. Let u(z) be a nonnegative solution of zlu(z)=Q(z)u(z) on
R. As in [5] take a regular exhaustion {R}= of R such that z0 e R,
R[._)= V and R--Rn.[._J=+ V. Consider boundary function
u, (nk) for the region S-R- .__ V such that u,=u on B==V and u,-0 on S-B. Since Q(z)dxdy=P(z)dxdy on S,
u(z) is a nonnegative solution of (1) on S. Therefore the maximum
principle or subharmonic functions yields
( 5 ) P.(Zo) _U(Zo) (n= 1, 2, k=n+ 1, n+ 2, ...).
Let G(z, ) be the Greea’s unction on S or (1). Then by the Green
ormula

1 u()_nG(zo,)ds.( 6 P,(Zo)---
On letting kc in (6), we deduce by (3) nd (5) that

tor every . On the other hand, since ()-(P)(z) on OV and Q>P
on V, the eomparison principle yields

u(z)<_(Pj)[(z) (]--1,2, ...).
By the above inequality with (4), (7), and u>_0, we have that lim u(z)
=0, i.e. inR u-0. Thus we conclude that Q e Dz. Q.E.D.

Remark. Since the density 0 belongs to the p-closure o D(R),
we in particular have
( 8 D(R) LI(R) :/: 0
which is the ull content o Nakai [5]. We remark that LI(R) cannot
be replaced by L(R) (14p_< c) even or the simplest

First observe that i there exist a constant >0 and a compact
subset X o a hyperbolic Riemann surace R which is the closure o a
regular subregion o R such that

( 9 ) [ H(z, )P()dd 2-- (- +i)
Jw

or any z e W-R--X, where H(z, ) is the harmonic Green’s unction
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on R, then P e Ds. In fact, the reduction operator T" PB(W)HB(W)
is surjective and then we have

1 Hw(z, 5)e,()P()dd](10) e,(z)-- 1-- 2---- w

where ee is the P-unit on W and H(z, ) is the harmonic Green’s
unction on W (cf. Nakai [3], [4]). By (9), (10), H(z, )<_H(z, ), and
0epl, we deduce that ep(z)>_6/(2) for ze W, i.e. infw eel0. By
the remark in no. 3 in [5], we conclude that (9) implies P e Ds. We
next show that if the density PeLP(R) (lp_<), then P eDs(R),
where R--{z;Izll}, i.e. Ds(R)Lp(R)-O (lp<_). Let H(z,)
be the harmonic Green’s unction on R and set R {z zl 1- l/n}.
Clearly

limn H(z, )qdd-O q-p/(p-1))(11)
R-Rn

uniformly with respect to z. On the other hand, by HSlder’s inequality,
we have

(12) _H(z, )P()ddri_(_H(z, )dd)’/(f_P()dd])/’.

In view of P e L(R) and (11), the left hand side of (12) satisfies the
condition (9) for sufficiently large n. Thus we eo.nelude that P Ds(R).
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