187. Denseness of Singular Densities

By Michihiko KAWAMURA*)

Mathematical Institute, Department of Education, Fukui University

(Comm. by Kôsaku Yosida, M. J. A., Dec. 12, 1974)

Consider a 2-form P(z)dxdy on an open Riemann surface R such that the coefficients P(z) are nonnegative locally Hölder continuous functions of local parameters z=x+iy on R. Such a 2-form P(z)dxdywill be referred to as a *density* on R. We shall call a density P singular if any nonnegative C^2 solution u of the elliptic equation (1) $\Delta u(z)=P(z)u(z)$ (i.e. $d^*du(z)=u(z)P(z)dxdy$)

on R has the zero infimum, i.e. $\inf_{z \in R} u(z) = 0$. We denote by D = D(R)and $D_s = D_s(R)$ the set of densities and singular densities on R, respectively. According to Myrberg [2], (1) always possesses at least one strictly positive solution for any open Riemann surface R. In connection with the existence of Evans solution, Nakai [5] showed that $D_s \neq \emptyset$ for any open Riemann surface R. The purpose of this note is to show that D_s is not only nonvoid but also contains sufficiently many members in the following sense: D_s is dense in D with respect to the metric

$$\rho(P_1, P_2) = \left(\int_R |P_1(z) - P_2(z)| \, dx \, dy \right)^*$$

on *D*, where $a^* = a/(1+a)$ for nonnegative numbers and $\infty^* = 1$. Namely, we shall prove the following

Theorem. The subspace $D_s(R)$ of singular densities is dense in the metric space $(D(R), \rho)$ for any open Riemann surface R.

Proof. We only have to show that for any $P \in D$ and any $\eta > 0$, there exists a $Q \in D_s$ such that

$$(2) \qquad \qquad \int_{\mathbb{R}} |P(z) - Q(z)| \, dx dy \leq \eta.$$

Our proof goes on an analogous way to [5]. Let $(\{z_j\}, \{U_j\}, \{\eta_j\})$ $(j=1,2,\cdots)$ be a system such that $\{z_j\}$ is a sequence of points in R not accumulating in R, U_j are parametric disks on R with centers z_j such that $\overline{U}_j \cap \overline{U}_k = \emptyset$ $(j \neq k)$, and $\{\eta_j\}$ is a sequence with $\eta_j > 0$ and $\sum_{j=1}^{\infty} \eta_j = \eta$. Furthermore we denote by V_j the concentric parametric disk $|z| < \rho_j$ $= \exp(-4\pi/\eta_j)$ of U_j $(j=1,2,\cdots)$. Let $G(z,\zeta)$ be the Green's function on $S = R - \bigcup_{j=1}^{\infty} \overline{V}_j$ for (1). Fix a point $z_0 \in S$ and set

^{*)} The work was done while the author was a Research Fellow at Nagoya University in 1974 supported by Japan Ministry of Education. The author is grateful to Professor Nakai for the valuable discussions with him.

No. 10]

(3)
$$\varepsilon_{j} = \operatorname{Min}_{\zeta \in \partial V_{j}} \rho_{j} \frac{\partial}{\partial n_{\zeta}} G(z_{0}, \zeta).$$

Since $\varepsilon_j > 0$ (cf. Itô [1]), by Lemma 1 in [5], there exist densities $P_j(z)dxdy$ on R whose supports are contained in V_j such that

$$(4) \qquad |(P_j)_j^{\mathcal{V}_j}(z_j)| \leq \varepsilon_j \left| \frac{1}{2\pi} \int_0^{2\pi} f(\rho_j e^{i\theta}) d\theta \right|$$

for every f in $C(\partial V_j)$ and $\int_{\mathbb{R}} P_j(z) dx dy \le \eta_j$ for each $j=1,2,\cdots$, where P_f^v is the continuous function on \overline{V} such that $P_f^v | \partial V = f$ and P_f^v is a solution of (1) on V. Using the above densities P_j we define

 $Q(z)dxdy = P(z)dxdy + \sum_{j=1}^{\infty} P_j(z)dxdy$

on *R*. Clearly Q(z)dxdy satisfies the inequality (2). We have to prove that $Q \in D_s$. Let u(z) be a nonnegative solution of $\Delta u(z) = Q(z)u(z)$ on *R*. As in [5] take a regular exhaustion $\{R_j\}_{j=1}^{\infty}$ of *R* such that $z_0 \in R_1$, $R_n \supset \bigcup_{j=1}^n \overline{V}_j$ and $R - \overline{R}_n \supset \bigcup_{j=n+1}^{\infty} V_j$. Consider a boundary function $u_{n,k}$ (n < k) for the region $S_k = R_k - \bigcup_{j=1}^k \overline{V}_j$ such that $u_{n,k} = u$ on B_n $= \bigcup_{j=1}^n \partial V_j$ and $u_{n,k} = 0$ on $\partial S_k - B_n$. Since Q(z)dxdy = P(z)dxdy on S_k , u(z) is a nonnegative solution of (1) on S_k . Therefore the maximum principle for subharmonic functions yields

(5) $P_{u_{n,k}}^{S_k}(z_0) \le u(z_0)$ $(n=1,2,\cdots;k=n+1,n+2,\cdots)$. Let $G_k(z,\zeta)$ be the Green's function on S_k for (1). Then by the Green formula

(6)
$$P_{u_{n,k}}^{S_k}(z_0) = \frac{1}{2\pi} \sum_{j=1}^n \int_{\partial V_j} u(\zeta) \frac{\partial}{\partial n_{\zeta}} G_k(z_0,\zeta) ds_{\zeta}.$$

On letting $k \rightarrow \infty$ in (6), we deduce by (3) and (5) that

(7)
$$\sum_{j=1}^{n} \varepsilon_j \int_0^{2\pi} u(\rho_j e^{i\theta}) d\theta \leq 2\pi u(z_0)$$

for every *n*. On the other hand, since $u(z) = (P_j)_u^{V_j}(z)$ on ∂V_j and $Q \ge P_j$ on \overline{V}_j , the comparison principle yields

$$u(z_j) \leq (P_j)_u^{V_j}(z_j)$$
 $(j=1,2,\cdots).$

By the above inequality with (4), (7), and $u \ge 0$, we have that $\lim_{j\to\infty} u(z_j) = 0$, i.e. $\inf_R u = 0$. Thus we conclude that $Q \in D_S$. Q.E.D.

Remark. Since the density 0 belongs to the ρ -closure of $D_{\mathcal{S}}(R)$, we in particular have

 $(8) D_{\mathcal{S}}(R) \cap L^{1}(R) \neq \emptyset$

which is the full content of Nakai [5]. We remark that $L^1(R)$ cannot be replaced by $L^p(R)$ $(1 \le p \le \infty)$ even for the simplest $R = \{|z| \le 1\}$.

First observe that if there exist a constant $\delta > 0$ and a compact subset X of a hyperbolic Riemann surface R which is the closure of a regular subregion of R such that

(9)
$$\int_{W} H(z,\zeta) P(\zeta) d\xi d\eta < 2\pi - \delta \qquad (\zeta = \xi + i\eta)$$

for any $z \in W \equiv R - X$, where $H(z, \zeta)$ is the harmonic Green's function

[Vol. 50,

on R, then $P \notin D_s$. In fact, the reduction operator $T_p: PB(W) \rightarrow HB(W)$ is surjective and then we have

(10)
$$e_P(z) = 1 - \frac{1}{2\pi} \int_W H_W(z,\zeta) e_P(\zeta) P(\zeta) d\xi d\eta$$

where e_P is the *P*-unit on *W* and $H_W(z,\zeta)$ is the harmonic Green's function on *W* (cf. Nakai [3], [4]). By (9), (10), $H_W(z,\zeta) \leq H(z,\zeta)$, and $0 < e_P < 1$, we deduce that $e_P(z) \geq \delta/(2\pi)$ for $z \in W$, i.e. $\inf_W e_P > 0$. By the remark in no. 3 in [5], we conclude that (9) implies $P \notin D_s$. We next show that if the density $P \in L^p(R)$ $(1 , then <math>P \notin D_s(R)$, where $R = \{z; |z| < 1\}$, i.e. $D_s(R) \cap L^p(R) = \emptyset$ $(1 . Let <math>H(z,\zeta)$ be the harmonic Green's function on *R* and set $R_n = \{z; |z| < 1 - 1/n\}$. Clearly

(11)
$$\lim_{n\to\infty}\int_{R-R_n}H(z,\zeta)^{q}d\xi d\eta=0 \qquad q=p/(p-1))$$

uniformly with respect to z. On the other hand, by Hölder's inequality, we have

(12) $\int_{R-R_n} H(z,\zeta) P(\zeta) d\xi d\eta \leq \left(\int_{R-R_n} H(z,\zeta)^q d\xi d\eta \right)^{1/q} \left(\int_{R-R_n} P(\zeta)^p d\xi d\eta \right)^{1/p}.$ In view of $P \in L^p(R)$ and (11), the left hand side of (12) satisfies the condition (9) for sufficiently large n. Thus we conclude that $P \notin D_{\mathcal{S}}(R)$.

References

- S. Itô: Martin boundary for linear elliptic differential operators of second order in a manifold. J. Math. Soc. Japan, 16, 307-334 (1964).
- [2] L. Myrberg: Über die Existenz der Greenschen Funktion der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen. Ann. Acad. Sci. Fenn., **170**, 1–8 (1954).
- [3] M. Nakai: The space of bounded solutions of the equation $\Delta u = Pu$ on a Riemann surface. Proc. Japan Acad., **36**, 267-272 (1960).
- [4] —: Banach spaces of bounded solutions of $\Delta u = Pu$ ($P \ge 0$) on hyperbolic Riemann surfaces. Nagoya Math. J., 53, 141–154 (1974).
- [5] ——: Densities without Evans solutions. Tohoku Math. J., 26, 405-415 (1974).